• Title/Summary/Keyword: Dye Wastewater

Search Result 183, Processing Time 0.023 seconds

Degradation of Reactive Black 5 by potassium ferrate(VI) (페레이트를 활용한 아조 염료 Reactive Black 5 분해 연구)

  • Minh Hoang Nguyen;Il-kyu Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.17-27
    • /
    • 2024
  • This paper aims to study the degradation process for refractory azo dye namely Reactive Black 5(RB5) by potassium ferrate(VI) synthesized using the wet oxidation method. The process of degradation of azo dyes by Ferrate was studied with several parameters such as pH, different Ferrate(VI) dosage, different azo dye initial concentration, and temperature. A second-order reaction was observed in all degradation processes for RB5 having the highest degradation efficiency. The highest kapp value of RB5 degradation was 190.49 M-1s-1. In the pH experiments, the neutral condition has been identified as the optimum condition for the degradation of RB5 with 63.2% of dye removal. The efficiency of degradation also depends on the amount of ferrate(VI) available in the reactor. Degradation efficiency increased with an increase in Potassium Ferrate(VI) dosage or a decrease of RB5 initial concentration. The temperature has been reported as one of the most important parameters. From the results, increasing the temperature(up to 45℃) will increase the degradation efficiency of azo dye by Ferrate(VI) and if the temperature exceeds 45℃, the degradation efficiency will be decreased.

생물학적 염색폐수처리에서 담체의 영향

  • Lee, Gi-Yong;Lee, Yeong-Rak;Im, Ji-Hun;Kim, Sang-Yong;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.382-385
    • /
    • 2000
  • This study tested for biological treatment of dye wastewater using isolated microbes taken from dye wastewater and commercial carriers. In the result, single strain of mocrobe achieved about 45% color removal efficiency in average. When two strains of microbes applied to the treatment, color removal efficiency was increased up to 85%. The carriers had optimal concentration as 15%

  • PDF

The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent

  • Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.

Photo and Electrocatalytic Treatment of Textile Wastewater and Its Comparison

  • Singaravadivel, C.;Vanitha, M.;Balasubramanian, N.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • Electrochemical and photochemical techniques have been proved to be effective for the removal of organic pollutants in textile wastewater. The present study deals with degradation of synthetic textile effluents containing reactive dyes and assisting chemicals, using electro oxidation and photo catalytic treatment. The influence of various operating parameters such as dye concentration, current density, supporting electrolyte concentration and lamp intensity on TOC removal has been determined. From the present investigation it has been observed that nearly 70% of TOC removal has been recorded for electrooxidation treatment with current density 5 mA/$dm^2$, supporting electrolyte concentration of 3 g/L and in photocatalytic treatment with 250 V as optimum lamp intensity nearly 67% of TOC removal was observed. The result indicates that electro oxidation treatment is more efficient than photocatalytic treatment for dye degradation.

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Utilization of Agricultural Residues as Low Cost Adsorbents for the Removal Dyes from Aqueous Solution (농업부산물(農業副産物)을 이용한 염료리용(染料理用) 저가흡착제(低價吸着劑)의 개발동향)

  • Shin, Hee-Duck
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2012
  • This review evaluates a number of different agricultural waste adsorbents and types of dyes. Certain wastewater containing different dye contaminants causes serious environmental problems. Recently, growing research interest in the production of carbon based has been focused on agricultural by-products. Low cost adsorbents derived from agricultural wastes have demonstrated outstanding capabilities for the removal of dyes from waste water. The use of cheap and eco-friendly adsorbents have been studied as an alternative substitution of activated carbon for the removal dyes from wastewater.

Isolation and Charaterization of Dye-Degrading Microorganisms for Treatment of Chromaticity Contained in Industrial Dyeing Wastewater (염색공단폐수의 색도처리를 위한 염료분해 균주의 분리와 특성)

  • Kim, Jung Tae;Park, Guen Tae;Lee, Geon;Kang, Kyeong Hwan;Kim, Joong Kyun;Lee, Sang Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.129-142
    • /
    • 2014
  • To treat chromaticity contained in effluents of dyeing wastewater efficiently, potent dye-degrading microorganisms were isolated from influent water, aeration- tank sludge, recycle water and settling-tank sludge located in leather and dyeing treatment plant. Six potent strains were finally isolated and identified as Comamonas testosteroni, Methylobacteriaceae bacterium, Stenotrophomonas sp., Kluyveromyces fragilis, Ascomycetes sp. and Basidiomycetes sp. When Basidiomycetes sp. was inoculated into ME medium containing basal mixed-dyes, 93% of color was removed after 8 days incubation. In the same experiment, the 1:1 mixed culture of Basidiomycetes sp. and photosynthetic bacterium exhibited 88% of color removal; however, it showed better color removal for single-color dyes. The aeration-tank and settling-tank samples revealed higher color removal (95-96%) for black dyes. The settling-tank sample also revealed higher color removal on basal mixed-dyes, which resulted in 90% color removal after 6-h incubation. From the above results, it is expected to achieve a higher color removal using the mixed microorganisms that were isolated from aeration-tank and settling-tank samples.

Decolorization of dye solution using membrane bioreactor (MBR) by Trametes versicolor (막생물반응기(MBR)에 의한 염료용액의 처리연구)

  • Lee, Yuri;Kim, Hyun-Gi;Park, Chulhwan;Lee, Byunghwan;Kim, Sangyong
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Due to the low biodegradability of dyes, conventional biological wastewater treatment systems are inefficient in treating textile wastewater. In this study, white rot fungus, Trametes versicolor KCTC 16781, were investigated for the decolorization of Reactive black 5 solutions. This fungus was able to degrade the dye solutions by the ligninolytic enzymes (laccase and MnP) produced. The enzyme activity remained constant until the end of reaction. The combined process of biological treatment and ceramic membrane showed better efficiency for decolorization and TOC removal than each single process.

  • PDF

Effect of Dye-Degrading Microbes' Augmentation on Microbial Ecosystem of the Fluidizing Media and Color Treatment in a Pilot Plant (염료 분해균 증대를 통한 Pilot Plant에서의 담체 내 미생물 생태와 색도처리에 미치는 영향)

  • Kim, Jung-Tae;Lee, Geon;Park, Do-Hyeon;Kang, Kyeong-Hwan;Kim, Joong-Kyun;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.681-695
    • /
    • 2014
  • In a pilot-scale dyeing wastewater treatment using two-type fluidizing media, each thickness of biofilm was 15 and 30 ${\mu}m$, respectively. The numbers of protozoa inhabited in small-size (PEMT A) and big-size (PEMT B) media were $7.5{\times}10^4$ and $1.25{\times}10^5$ cells/ml, respectively, and dominant species were Entosiphon sulcatus var sulcatus in PEMT A and Chlamydomonas reinhardtii in PEMT B, respectively. Flask experiments using the two media revealed that the percentages of color removal were 25.8% in PEMT A and 27.1% in PEMT B after 72-h cultivation, indicating the necessity of bioaugmentation. Experiments for bioaugmentation effect on color removal were carried out in the pilot-scale treatment for 75 d by three-step operation under the control of wastewater loading rate and microbial input rate. Dye degradation occurred mainly in the second reaction tank, and the attachment of augmented dye-degrading microorganisms to media took at least 35 d. Final value of chromaticity in effluent was 227, meeting the required standard. Therefore bioaugmentation onto media was good for color treatment. In summary, thickness of biofilm formed on the media depended upon the size of media, resulting in different ecosystem inside the media. Hence, this affected microbial community and color treatment further. Accordingly, the reduction of operation cost is expected by efficient color-treatment process using bioaugmented media.

Charateristics of Akalophilic Microorganism Developed for Color Removal of Dye (염료의 색도 제거를 위해 개발된 호알칼리성 미생물의 특성)

  • Lee, Hyun-Wuk;Lim, Dong-Joon
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2010
  • An alkalophilic microorganism capable of degrading dyes was developed for the treatment of alkaline dye solution. This strain was identified as Pseudomonas species. Using this microorganism, biological treatment of dye was studied in Erlenmeyer flasks. The characteristics of this microorganism were observed under various incubating-condition such as temperature, pH, nitrogen source, and macronutrients concentration. The removal effciencies of Disperse Red 60 from synthetic wastewater were 33.5 ~ 36.9% at the range of $30{\sim}40^{\circ}C$, and they were 31.1 ~ 36.7% at the range of initial pH 8 ~ pH 10, respectively. The optimal culture medium was found to be 0.25%(w/v) yeast extract, 0.25%(w/v) polypeptone, 0.1%(w/v) $KH_2PO_4$, 0.2%(w/v) $MgSO_4{\cdot}7H_2O$, and 1.0%(w/v) $Na_2CO_3$. In treatment of various dyes using Erlenmeyer flasks, the removal effciencies of Disperse Blue 87, Disperse Yellow 64, Disperse Red 60, Acid Blue 193, Acid Red 138, and Direct Yellow 23 were found to be 76%, 71%, 58%, 93%, 94%, and 90% respectively after 24hrs reaction of alkalophilic strain Pseudomonas sp. YBE-12.