• Title/Summary/Keyword: Due Process

Search Result 14,917, Processing Time 0.049 seconds

Looperless Tension Control in Hot Rolling Process Using SVR

  • Shim, Jun-Hong;Han, Dong-Chang;Kim, Jeong-Don;Park, Cheol-Jae;Park, Hae-Doo;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • This paper proposes a looperless tension control algorithm which is robust to disturbance and tensional variation in rolling process using SVR(Support Vector Regression). Hot rolling process which is global technology to coil steel after continuous finishing process for welded bars followed by roughing mill process, becomes hot issue. Finishing mill process not only makes it possible to produce ultra thin steel strip(0.8 mm) but enhance the quality of terminals of coil, which increases the productivity due to faster process. Constant tension control between stands in hot rolling process is essential to enhance the quality of steel. Sensorless tension control is under research by some advanced companies to replace the conventional tension control method because in continuous finishing mill process, it is impossible to install the looper used in conventional control system. Simulation results show the effectiveness of the proposed algorithm.

  • PDF

Throughput Analysis for Dual Blade Robot Cluster Tool (듀얼블레이드 로봇 클러스터툴의 생산성 분석)

  • Ryu, Sun-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1240-1245
    • /
    • 2009
  • The throughput characteristics of the cluster tool with dual blade robot are analyzed. Using equipment's cycle time chart of the equipment, simple analytic form of the throughput is derived. Then, several important throughput characteristics are analyzed by the throughput formula. First, utilization of the process chamber and the robot are maximized by assigning the equipment to the process whose processing time is near the critical process time. Second, rule for selecting optimal number of process chambers is suggested. It is desirable to select a single process chamber plus a single robot structure for relatively short time process and multi process chambers plus a single robot, namely cluster tool for relatively long time process. Third, throughput variation between equipments due to the wafer transfer time variation is analyzed, especially for the process whose processing time is less than critical process time. And the throughput and the wafer transfer time of the equipments in our fabrication line are measured and compared to the analysis.

Effects of Fabrication Process Variation on Impedance of Neural Probe Microelectrodes

  • Cho, Il Hwan;Shin, Hyogeun;Lee, Hyunjoo Jenny;Cho, Il-Joo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1138-1143
    • /
    • 2015
  • Effects of fabrication process variations on impedance of microelectrodes integrated on a neural probe were examined through equivalent circuit modeling and SPICE simulation. Process variation and the corresponding range were estimated based on experimental data. The modeling results illustrate that the process variation induced by metal etching process was the dominant factor in impedance variation. We also demonstrate that the effect of process variation is frequency dependent. Another process variation that was examined in this work was the thickness variation induced by deposition process. The modeling results indicate that the effect of thickness variation on impedance is negligible. This work provides a means to predict the variations in impedance values of microelectrodes on neural probe due to different process variations.

Residual Stress Analysis of Rot Rolled Strip in Coiling Process (권취 공정 중 열연 강판의 잔류 응력 해석)

  • 구진모;김홍준;이재곤;황상무
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.302-307
    • /
    • 2003
  • Hot rolled strip is cooled by air and water in Run-Out-Table. In this process, phase transformation and shape deformation occurs due to temperature drop. Because of un-ideal cooling condition of ROT, irregular shape deformation and phase transformation arise in the strip. which affect the strip property and lead to the residual stress of strip. And these exert effects on the following processes, coiling process, coil cooling process, and re-coiling process. Through these processes, the residual stress becomes higher and severe. For the prediction of residual stress distribution and shape deformation of final product, Finite element(FE) based model was used. It consists of non-steady state heat transfer analysis, elasto-plastic analysis. thermodynamic analysis and phase transformation kinetics. Successive FEM simulation were applied from ROT process to coil cooling process. In each process simulation, previous process simulation results were used for the next process simulation. The simulation results were matched well with the experimental results.

A Study on the Standardization of Fuse Process for Automation of Manufacturing (공장자동화를 위한 신발갑피 Fuse공정 표준화 설계 연구)

  • Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.235-241
    • /
    • 2019
  • The shoe manufacturing process is very low compared to other industries due to the labor-intensive process. As automation and smart factories are becoming more and more automated, changes in the shoe manufacturing process are also needed. In this paper, we want to standardize the fuse manufacturing process by modularizing it. First, we defined the terms of shoeupper and fuse process, the shoe upper fuse process by function and classified it as a modular process. The fuse process can be modularized with pattern supply module, pattern recognition module, pattern laminate module, pattern waiting module, adhesion module, heat pressing module, transmission module, etc.

A Process Sequence Design of the Mulit-Step Cold Extrusion using Thick-Wall Pipes (중공축 소재를 이용한 다단계 냉간압출 공정의 설계)

  • Park, Chul;Choi, Ho-Joon;Hwang, Beong-Bok
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.219-231
    • /
    • 1996
  • The current five-stage cold extrusion process to produce an axle-housing is investigated for the purpose of improved process. The main goal of this study is to obtain an appropriate reduced process sequence which can produce the required part most economically without tensile crack-ing workpiece buckling and overloading of the tools. The current process sequence is simulated and design criteria are examined. during the simulation several remeshings are done due to severe mesh distortions, Based on the results of simulations of the current five-stage process, design strategy for improving the process sequence are developed using the thick hollow pipes. The finished product of an axle-housing is produced in two operations and one annealing treatment while the conventional sequence consists of five operations and one annealing treat-ment. Also die loads of the new process are compared with those of the current one.

  • PDF

Rheological perspectives of industrial coating process

  • Kim, Sun-Hyung;Kim, Jae-Hong;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • Coating process plays an important role in information technology such as display, battery, chip manufacturing and so on. However, due to complexity of coating material and fast deformation of the coating flow, the process is hard to control and it is difficult to maintain the desired quality of the products. Moreover, it is hard to measure the coating process because of severe processing conditions such as high drying temperature, high deformation coating flow, and sensitivity to the processing variables etc. In this article, the coating process is to be re-illuminated from the rheological perspectives. The practical approach to analyze and quantify the coating process is discussed with respect to coating materials, coating flow and drying process. The ideas on the rheology control of coating materials, pressure and wet thickness control in patch coating process, and stress measurement during drying process will be discussed.

Tapping Machining Characteristics of Titanium Hard-to-Cut Material (티타늄 난삭재의 탭핑 가공 특성)

  • Lee, Ho-Chang;Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2011
  • This study compared and analyzed manual tapping and automatic tapping regarding tapping process characteristics of titanium hard-to-cut-material. Tapping process characteristics of titanium hard-to-cut-material are evaluated as the quality of a screw, wear of a tap, economic analysis, and cycle time etc. The type of screw threads after manual tapping is formed as an irregular type of screw threads, and perfect screw threads are created after automatic tapping. In addition, the chip type after manual tapping process is formed as the discontinuous chip due to work hardening, and the powder type of chip after automatic tapping process is created. In terms of cycle time, an automatic tapping process is shortened by 70% compared to manual tapping process. Insert tip wear of an automatic tapping shown in the process of 5-hole tapping is not found, but hand tap wear for finish cutting is most severe.

THE EMPIRICAL LIL FOR THE KAPLAN-MEIER INTEGRAL PROCESS

  • Bae, Jong-Sig;Kim, Sung-Yeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.269-279
    • /
    • 2003
  • We prove an empirical LIL for the Kaplan-Meier integral process constructed from the random censorship model under bracketing entropy and mild assumptions due to censoring effects. The main method in deriving the empirical LIL is to use a weak convergence result of the sequential Kaplan-Meier integral process whose proofs appear in Bae and Kim [2]. Using the result of weak convergence, we translate the problem of the Kaplan Meier integral process into that of a Gaussian process. Finally we derive the result using an empirical LIL for the Gaussian process of Pisier [6] via a method adapted from Ossiander [5]. The result of this paper extends the empirical LIL for IID random variables to that of a random censorship model.

Severe trismus due to bilateral coronoid process hyperplasia in growth hormone therapy patient: a case report

  • Lee, Sung-Tak;Chung, In-Kyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.249-254
    • /
    • 2012
  • Bilateral coronoid process hyperplasia is a rare condition characterized by an enlarged mandibular coronoid process. The painless progressive reduction of a mouth opening is caused by coronoid process impingement on the posterior aspect of the zygomatic bone. Hyperplasia of the bilateral coronoid process leads to the restriction of a mandibular opening consequent to the impingement of the enlarged coronoid process on the temporal surface of the zygomatic bone or with the medial surface of the zygomatic arch. The process has been diagnosed as developmental hyperplasia. Otherwise, the development of the coronoid process may be associated with growth hormone. This paper describes a case of trismus caused by coronoid hyperplasia in an idiopathic short-stature patient who received growth hormone therapy by somatropin injections.