• 제목/요약/키워드: Ductility Index

검색결과 134건 처리시간 0.023초

Bi-S 쾌삭강의 칩생성특성 (Chip Forming Characteristics of Bi-S Free Machining Steel)

  • 조삼규
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.48-54
    • /
    • 2000
  • In this study the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison those of the cold drawn Pb-S free machining steel the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation chip cross-section area ratio is introduced. The chip cross-section area ratio is defined as chip cross-section area is divided by undeformed chip cross-section area. The variational patters of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress however seems to be dependent on the carbon content of the materials. The cold drawn Bi-S and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of free machining inclusions such as MnS Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

Characterization and modeling of near-fault pulse-like strong ground motion via damage-based critical excitation method

  • Moustafa, Abbas;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.755-778
    • /
    • 2010
  • Near-fault ground motion with directivity or fling effects is significantly influenced by the rupture mechanism and substantially different from ordinary records. This class of ground motion has large amplitude and long period, exhibits unusual response spectra shapes, possesses high PGV/PGA and PGD/PGA ratios and is best characterized in the velocity and the displacement time-histories. Such ground motion is also characterized by its energy being contained in a single or very few pulses, thus capable of causing severe damage to the structures. This paper investigates the characteristics of near-fault pulse-like ground motions and their implications on the structural responses using new proposed measures, such as, the effective frequency range, the energy rate (in time and frequency domains) and the damage indices. The paper develops also simple mathematical expressions for modeling this class of ground motion and the associated structural responses, thus eliminating numerical integration of the equations of motion. An optimization technique is also developed by using energy concepts and damage indices for modeling this class of ground motion for inelastic structures at sites having limited earthquake data.

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

Bi-S 쾌삭강의 칩생성특성 (Chip Forming Characteristics of Bi-S Free Machining Steel)

  • 이영문
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.351-356
    • /
    • 1999
  • In this study, the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison, those of the cold drawn Pb-S free machining steel, the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation, the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation, 'chip cross-section area ratio' is introduced. The chip cross-section area. The variational patterns of cross-section area is divided by undeformed chip cross-section area. The variational patterns of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress, however, seems to be dependent on the carbon content of the materials. The cold drawn BiS and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of non-metallic inclusions such as MnS, Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

구조손상을 고려한 기설구조물의 내진성능평가 (Seismic Capacity Evaluation of Existing Structures Incorporating Damage Assessment)

  • 송종걸;이진학;이동근
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.543-553
    • /
    • 2004
  • 이 연구는 구조물의 내진성능평가와 관련하여, 기설구조물의 현재 상태에서의 구조손상을 추정하고, 이를 반영하여 내진성능을 평가하도록 하는 절차를 제안하였다. 구조손상 추정을 위해서는 역섭동법을 사용하였고, 역섭동법의 단점을 극복하기 위하여 부분구조법과 Tikhonov의 정규화 방법을 도입하였다. 손상된 구조물의 내진성능 평가를 위하여 구조물의 지진응답과 해당 구조물의 지진손상지수를 이용하였고, 제안 방법을 20층 예제구조물에 적용하여 손상추정 결과를 반영하는 것의 영향을 분석하였다.

Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components

  • Girgin, Sadik Can;Misir, Ibrahim Serkan;Kahraman, Serap
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.229-245
    • /
    • 2017
  • Post-earthquake observations revealed that seismic performance of beam-column connections in precast concrete structures affect the overall response extensively. Seismic design of precast reinforced concrete structures requires improved beam-column connections to transfer reversed load effects between structural elements. In Turkey, hybrid beam-column connections with welded components have been applied extensively in precast concrete industry for decades. Beam bottom longitudinal rebars are welded to beam end plates while top longitudinal rebars are placed to designated gaps in joint panels before casting of topping concrete in this type of connections. The paper presents the major findings of an experimental test programme including one monolithic and five precast hybrid half scale specimens representing interior beam-column connections of a moment frame of high ductility level. The required welding area between beam bottom longitudinal rebars and beam-end plates were calculated based on welding coefficients considered as a test parameter. It is observed that the maximum strain developed in the beam bottom flexural reinforcement plays an important role in the overall behavior of the connections. Two additional specimens which include unbonded lengths on the longitudinal rebars to reduce that strain demands were also tested. Strength, stiffness and energy dissipation characteristics of test specimens were investigated with respect to test variables. Seismic performances of test specimens were evaluated by obtaining damage indices.

Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load

  • Liang, Hongjun;Lu, Yiyan;Hu, Jiyue;Xue, Jifeng
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1577-1588
    • /
    • 2018
  • As the excellent mechanical performance and easy construction of concrete filled steel tubes (CFST) composite structure, it has the potential to be used to strengthen RC pier columns. Therefore, tests were conducted on 2 reinforcement concrete (RC) stub columns and 9 RC columns strengthened with circular CFST under axial loading. The test results show that the circular CFST strengthening method is effective since the mean bearing capacity of the RC columns is increased at least 3.69 times and the ductility index is significantly improved more than 30%. One of the reasons for enhancement is obvious confinement provided by steel tube besides the additional bearing capacity supplied by the strengthening materials. From the analysis of the enhancement ratio, the strengthening structure has at least an extra 20% amplification except for taking full advantage of the strength of the strengthening material. Through the analysis of confining stress provided by steel tube and the stress-strain relationship of confined concrete, it is found that the strength of the core concrete can be increased by 21-33% and the ultimate strain can be enhanced to beyond $15,000{\mu}{\varepsilon}$.

Axial load-strain relationships of partially encased composite columns with H-shaped steel sections

  • Bangprasit, Papan;Anuntasena, Worakarn;Lenwari, Akhrawat
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.51-66
    • /
    • 2022
  • This paper presents the axial compression behavior of partially encased composite (PEC) columns using H-shaped structural steel. In the experimental program, a total of eight PEC columns with H-shaped steel sections of different flange and web slenderness ratios were tested to investigate the interactive mechanism between steel and concrete. The test results showed that the PEC columns could sustain the load well beyond the peak load provided that the flange slenderness ratio was not greater than five. In addition, the previous analytical model was extended to predict the axial load-strain relationships of the PEC columns with H-shaped steel sections. A good agreement between the predicted load-strain relationships and test data was observed. Using the analytical model, the effects of compressive strength of concrete (21 to 69 MPa), yield strength of steel (245 to 525 MPa), slenderness ratio of flange (4 to 10), and slenderness ratio of web (10 to 25) on the interactive mechanism (Kh = confinement factor for highly confined concrete and Kw = reduction factor for steel web) and ductility index (DI = ratio between strain at peak load and strain at proportional load) were assessed. The numerical results showed that the slenderness of steel flange and yield strength of steel significantly influenced the compression behavior of the PEC columns.

유한요소해석 기반 확대머리 이형철근 상세 따른 RC보의 구조성능 효과 분석 (Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis)

  • 김건수;박기태;박창진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.40-47
    • /
    • 2021
  • 본 연구에서는 확대머리 정착이음을 갖는 연결부의 상세에 따른 구조거동을 유한요소해석을 통해 분석하였다. 복잡한 접촉조건과 비선형 거동을 나타내는 연결부의 유한요소해석을 위하여 외연적 동해석을 활용한 준정적 해석 기법을 적용하였다. 기존 실험결과와 해석결과를 비교하여 유한요소모델의 정확성을 검토하였으며, 준정적 해석 기법은 확대머리 연결부의 비선형성을 잘 반영하는 것을 확인하였다. 다양한 정착길이, 횡방향 철근지수를 갖는 21가지 유한요소모델을 활용하여 구조해석을 수행한 결과 정착길이와 횡방향 철근지수의 증가는 강도와 연성도를 증가 시키는 것을 확인하였으나, 충분한 구조성능을 확보하기 위해서는 두 가지 설계변수 모두 일정수준을 확보해야 함을 확인하였다. 최근 개정된 확대머리 정착이음 설계기준에서는 정착길이와 횡방향 철근지수를 모두 고려하는 설계식을 제시하고 있으며, 본 연구의 결과에서도 정착길이 뿐만 아니라 횡방향 보강철근이 매우 중요한 영향을 미치는 것을 확인하였다.

유럽과 국내기준에 규정된 취성파괴 방지를 위한 휨 최소철근량 고찰 (A Study on the Flexural Minimum Reinforcement for Prevention of Brittle Failure Specified in KCI and EN Codes)

  • 박성재;강태성;문도영
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.211-218
    • /
    • 2014
  • 철근콘크리트 직사각형 휨 부재의 설계에서, 최소철근량은 취성파괴를 방지하기 위하여 필요하다. 콘크리트구조기준은 극한강도 설계개념을 기반으로 국내에서 일반적으로 사용되는 모델코드이다. 그러나 국토해양부에서 2012년 제정한 도로교설계기준은 한계상태설계법을 기반으로 하고 있으며, 유럽의 EN 코드와 유사하다. 따라서, 두 설계기준에서 제시된 최소철근량은 서로 다른 기원과 안전율에 근거한다. 이 연구에서 단철근 직사각형 단면의 실험체에 상기 두 기준을 적용하여 분석한 결과, EN 코드에서 제시된 최소철근량은 KCI 코드에서 제시된 최소철근량의 76%에 불과하며, 이러한 점에서 구조 설계자의 혼란을 야기한다. 이 연구에서는, KCI와 EN 코드에서 제시한 각각의 최소철근량을 보강한 9개의 직사각형 단면의 휨 실험체를 제작하고, 휨 실험을 수행하였다. 결과에서, 모든 실험체에 대하여 실험에서 측정된 공칭강도와 균열강도의 비는 각 설계식으로부터 평가된 공칭강도와 균열강도의 비에 비하여 25% 이상 큰 것으로 나타났다. 국내기준에서 규정하고 있는 최소철근비의 76%가 보강된 EN 보는 보강철근의 파단으로 파괴되었지만 연성적인 파괴거동을 나타내었다. 따라서, 유럽과 국내기준에 의하여 설계된 최소철근비로 보강된 보는 충분한 구조적 안전성과 연성을 보유하고 있는 것으로 확인되었다.