Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.1.051

Axial load-strain relationships of partially encased composite columns with H-shaped steel sections  

Bangprasit, Papan (Composite Structures Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Anuntasena, Worakarn (Composite Structures Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Lenwari, Akhrawat (Composite Structures Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University)
Publication Information
Steel and Composite Structures / v.45, no.1, 2022 , pp. 51-66 More about this Journal
Abstract
This paper presents the axial compression behavior of partially encased composite (PEC) columns using H-shaped structural steel. In the experimental program, a total of eight PEC columns with H-shaped steel sections of different flange and web slenderness ratios were tested to investigate the interactive mechanism between steel and concrete. The test results showed that the PEC columns could sustain the load well beyond the peak load provided that the flange slenderness ratio was not greater than five. In addition, the previous analytical model was extended to predict the axial load-strain relationships of the PEC columns with H-shaped steel sections. A good agreement between the predicted load-strain relationships and test data was observed. Using the analytical model, the effects of compressive strength of concrete (21 to 69 MPa), yield strength of steel (245 to 525 MPa), slenderness ratio of flange (4 to 10), and slenderness ratio of web (10 to 25) on the interactive mechanism (Kh = confinement factor for highly confined concrete and Kw = reduction factor for steel web) and ductility index (DI = ratio between strain at peak load and strain at proportional load) were assessed. The numerical results showed that the slenderness of steel flange and yield strength of steel significantly influenced the compression behavior of the PEC columns.
Keywords
analytical model; composite column; compressive strength; confined concrete; partial encasement;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Mander, J.B., Priestley, M.J.N. and Park, R. (1988b), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).   DOI
2 Mirza, S.A. and Skarbek, B.W. (1991), "Reliability of short composite beam-column strength interaction", J. Struct. Eng., 117(8), 2320-2339. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2320).   DOI
3 Elnashai, A. and Broderick, B. (1994), "Seismic resistance of composite beam-columns in multi-storey structures. Part 1: Experimental studies", J. Construct. Steel Res., 30(3), 201-229. https://doi.org/10.1016/0143-974X(94)90001-9.   DOI
4 Elnashai, A. S., Elghazouli, A. Y., Takanashi, K. and Dowling, P. J. (1991), "Experimental behaviour of partially encased composite beam-columns under cyclic and dynamic loads", Institution Civil Eng. Proceedings Pt. 2, 91, 259-272. https://doi.org/10.1680/iicep.1991.14982.   DOI
5 Giuffre, A. and Pinto P. (1970), "Il comportamento del cemento armato per sollecitazione ciclice di forte intensita. Giornale del Genio Civile", 391-408.
6 Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A.W. (1997), "Stress-strain model for confined reinforced concrete in bridge piers", J. Struct. Eng., 123(5), 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)   DOI
7 Mirza, S.A. and Skarbek, B.W. (1992), "Statistical analysis of slender composite beam-column strength", J. Struct. Eng., 118(5), 1312-1332. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1312).   DOI
8 Hunaiti, Y. and Abdel Fattah, B. (1994), "Design considerations of partially encased composite columns", Proceedings of the Institution Civil Eng. Struct. Build., 104(1). https://doi.org/10.1680/istbu.1994.25681.   DOI
9 Jamkhaneh, M.E., Ahmadi, M. and Sadeghian, P. (2020), "Simplified relations for confinement factors of partially and highly confined areas of concrete in partially encased composite columns", Eng. Struct., 208, 110303. https://doi.org/10.1016/j.engstruct.2020.110303.   DOI
10 Kim, C., Park, H.-G., Chung, K.S. and Choi, I.R. (2014), "Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes", J. Struct. Eng., 140, 04013091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000879.   DOI
11 Mirza, S.A., Hyttinen, V. and Hyttinen, E. (1996), "Physical tests and analyses of composite steel concrete beam-columns", J. Struct. Eng., 122(11), 1317-1326. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1317).   DOI
12 Park, R. and Paulay, T. (1975). "Reinforced concrete structures", John Wiley & Sons. https://doi.org/10.1002/9780470172834.   DOI
13 Pereira, M.F., De Nardin, S. and El Debs, A.L. (2016), "Structural behavior of partially encased composite columns under axial loads", Steel Compos. Struct., 20(6), 1305-1322. https://doi.org/10.12989/scs.2016.20.6.1305.   DOI
14 Pereira, M.F., Nardin, S.D. and Debs, A. L.H.C.El. (2020), "Partially encased composite columns using fiber reinforced concrete: experimental study", Steel Compos. Struct., 34(6), 909-927. http://dx.doi.org/10.12989/scs.2020.34.6.909.   DOI
15 Prickett, B.S. and Driver, R.G. (2006), "Behaviour of partially encased composite columns made with high performance concrete", Department of Civil and Environmental Engineering, University of Alberta Edmonton, AB, Canada. https://doi.org/10.1016/j.engstruct.2013.07.040.   DOI
16 Razvi, S. and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281).   DOI
17 Task Group 20, S.S.R.C. (1979), "A specification for the design of steel-concrete composite columns", Eng. J., Fourth Quarter, 105-115.
18 Lai, B., Liew, J. Y. R., Venkateshwaran, A. and Xiong, M. (2020), "Assessment of high-strength concrete encased steel composite columns subject to axial compression", J. Construct. Steel Res., 164, 105765. https://doi.org/10.1016/j.jcsr.2019.105765.   DOI
19 Sheikh, S.A. and Uzumeri, S. (1982), "Analytical model for concrete confinement in tied columns", J. Struct. Division., 108(12), 2703-2722. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:12(2952).   DOI
20 Song, Y.C., Wang, R.P. and Li, J. (2016), "Local and post-local buckling behavior of welded steel shapes in partially encased composite columns", Thin-Wall. Struct., 108, 93-108. http://dx.doi.org/10.1016/j.tws.2016.08.003.   DOI
21 TIS (2015), Hot Rolled Structural Steel Industrial Standard. (TIS1227-15), Thai Industrial Satandard, Thailand.
22 Tremblay, R., Chicoine, T. and Massicotte, B. (2002), "Design equation for the axial capacity of partially encased non-compact columns", Compos. Construct. Steel Concrete IV, 506-517. https://doi.org/10.1061/40616(281)44.   DOI
23 Tremblay, R., Massicotte, B., Filion, I. and Maranda, R. (1998), "Experimental study on the behavior of partially encased composite columns made with light welded H steel shapes under compressive axial loads", 1998 SSRC Annual Technical Meeting., Atlanta, 195-204.
24 Al-Shahari, A.M., Hunaiti, Y.M. and Ghazaleh, B.A., (2003), "Behavior of lightweight aggregate concrete-encased composite columns", Steel Compos. Struct., 3(2), 97-110. https://doi.org/10.12989/scs.2003.3.2.097.   DOI
25 Wang, H., Li, J. and Song, Y. (2018), "Numerical study and design recommendations of eccentrically loaded partially encased composite columns", Int. J. Steel Struct., 19. https://doi.org/10.1007/s13296-018-0179-7.   DOI
26 Yin, Z.Z., Chen, S.L., Liang, Y.X. and Chen, W. (2015), "Analysis of the composite effect of partially concrete-encased H-shaped steel composite columns", Mater. Res. Innov., 19(sup10), S10-133-S110-138. http://dx.doi.org/10.1179/1432891715Z.0000000002124.   DOI
27 Zhu, W., Meng, G. and Jia, J. (2014), "Experimental studies on axial load performance of high strength concrete short columns", Struct. Build., 167(9), 509-519. https://doi.org/10.1680/stbu.13.00027.   DOI
28 AISC (2016), AISC Shapes Database, American Institute of Steel Construction, Chicago-Illinois. https://www.aisc.org/globalassets/aisc/manual/v15.0-shapesdatabase/aisc-shapes-database-v15.0.xlsx.
29 AISC (2016), A Specification for Structural Steel Buildings (ANSI/AISC 360-16), American Institute of Steel Construction, Chicago-Illinois.
30 Anuntasena, W., Lenwari, A. and Thepchatri, T. (2020) "Axial compression behavior of concrete-encased cellular steel columns", J. Construct. Steel Res., 172, 106220. https://doi.org/10.1016/j.jcsr.2020.106220.   DOI
31 ASTM (2013), Standard Test Methods for Tension Testing of Metallic Materials (ASTM E8 / E8M-13a), ASTM International, West Conshohocken, PA.
32 Uy, B. (2001), "Axial compressive strength of steel and composite columns fabricated with high stength steel plate", Steel Compos. Struct., 1. https://doi.org/10.1016/B978-008043015-7/50049-X.   DOI
33 ASTM (2016), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (ASTM C39 / C39M-16), ASTM International, West Conshohocken, PA.
34 Begum, M., Driver, R.G. and Elwi, A.E. (2013), "Behaviour of partially encased composite columns with high strength concrete", Eng. Struct., 56, 1718-1727. http://dx.doi.org/10.1016/j.engstruct.2013.07.040.   DOI
35 Lai, B., Richard Liew, J.Y. and Xiong, M., (2019), "Experimental study on high strength concrete encased steel composite short columns", Construct. Building Mater., 228, 116640.   DOI
36 Legeron, F. and Paultre, P. (2003), "Uniaxial confinement model for normal-and high-strength concrete columns", J. Struct. Eng., 129(2), 241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241).   DOI
37 Mander, J.B., Priestley, M.J.N. and Park R. (1988a), "Observed stress-strain behavior of confined concrete", J. Struct. Eng,. 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827).   DOI
38 Wang, Y.C. (1999), "Tests on slender composite columns", J. Construct. Steel Res., 49, 25-41. https://doi.org/10.1016/S0143-974X(98)00202-8.   DOI
39 Xiao, C., Deng, F., Chen, T. and Zhao, Z. (2017), "Experimental study on concrete-encased composite columns with separate steel sections", Steel Compos. Struct., 23(4), 483-491. https://doi.org/10.12989/scs.2017.23.4.483.   DOI
40 Zhao, X., Qin, H. and Chen Y. (2014), "Experimental study on constitutive model of steel confined concrete in SRC columns with cruciform steel section", J. Build. Struct., 4, 268-279.
41 Dastfan, M. and Driver, R. (2015), "Large-scale test of a modular steel plate shear wall with partially encased composite columns", J. Struct. Eng., 142, 04015142. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001424.   DOI
42 Zhu, W., Jia, J., Gao, J. and Zhang, F. (2016), "Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load", Eng. Struct., 125, 191-204. https://doi.org/10.1016/j.engstruct.2016.07.018.   DOI
43 Begum, M. and Ghosh, D. (2014), "Simulations of PEC columns with equivalent steel section under gravity loading", Steel Compos. Struct., 16, 305-323. https://doi.org/10.12989/scs.2014.16.3.305.   DOI
44 Begum, M., Driver, R.G. and Elwi, A.E. (2015), "Parametric study on eccentrically-loaded partially encased composite columns under major axis bending", Steel Compos. Struct., 19, 1299-1319. https://doi.org/10.12989/scs.2015.19.5.1299.   DOI
45 Chen, C.C. and Lin, N.J. (2006), "Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns", J. Construct. Steel Res., 62(5), 424-433. https://doi.org/10.1016/j.jcsr.2005.04.021.   DOI
46 Chen, S. and Wu, P. (2017), "Analytical model for predicting axial compressive behavior of steel reinforced concrete column". J. Construct. Steel Res., 128, 649-660. http://dx.doi.org/10.1016/j.jcsr.2016.10.001.   DOI
47 Chicoine, T., Tremblay, R., Massicotte, B., Ricles, J.M. and Lu, Le-Wu. (2002), "Behavior and strength of partially encased composite columns with built-up shapes", J. Struct. Eng., 128(3), 279-288. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(279).   DOI
48 Cusson, D. and Paultre, P. (1995). "Stress-strain model for confined high-strength concrete", J. Struct. Eng., 121(3), 468-477. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:4(286).   DOI
49 Ebadi-Jamkhaneh, M., Kafi, M. and Kheyroddin A. (2018), "Behavior of partially encased composite members under various load conditions: Experimental and analytical models", Adv. Struct. Eng., 22, 94-111. https://doi.org/10.1177/1369433218778725.   DOI