• 제목/요약/키워드: Ductile-to-brittle transition

검색결과 110건 처리시간 0.025초

AE를 이용한 AFM 연성 영역 가공 특성 연구 (Characteristic of Ductile Regime AFM Machining Using Acoustic Emission)

  • 안병운;이광호;이성환
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, atomic force microscope(AFM) with suitable tips is being used for nano fabrication/nanometric machining purposes. In this paper, acoustic emission(AE) was introduced to monitor the nanometric machining of brittle materials(silicon) using AFM. In the experiments, AE responses were sampled, as the tip load was linearly increased(ramped load), to investigate the machining characteristics during a continuous movement. By analyzing the experimental results, it can be concluded that measured AE energy is sensitive to changes in the mechanism of material removal including the ductile-brittle transition during the nanometric machining. The critical depth of cut value for the transition is evaluated and discussed.

연강(Mild Steel)의 극저온 파괴 거동에 대한 실험적 연구 (Study on Fracture Behavior of Mild Steel Under Cryogenic Condition)

  • 최성웅;이우일
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.62-66
    • /
    • 2015
  • LNG선이나 해양플랜트 같은 설비나 구조물은 작동 조건을 고려할 때, 특히 부재마다 가지는 고유한 연성 취성천이온도(Ductile to Brittle Transition Temperature, DBTT)를 고려하여 설계되어야 한다. 본 연구에서는 해양플랜트 및 LNG선에 hull plate로 쓰이는 A-grade 연강(mild steel)에 대해 DBTT를 샤르피 V-노치(CVN) 실험을 통해 알아보았고 파괴형상을 통한 파괴거동을 살펴보았다. 그 결과 온도가 감소함에 따라 충격 흡수에너지는 감소함을 보였다. Upper shelf energy region과 lower shelf energy region이 나타나고 그 사이 구간의 천이점을 통해 DBTT가 결정되었다. 파괴형상에서는 upper shelf energy region에서 수많은 딤플이 연성파괴 형상으로 관찰되고 lower shelf energy region에서는 전형적인 취성파단형상이 관찰되었다. 이를 통해 BCC 구조를 가지는 A-grade 연강은 upper shelf energy 구역과 lower shelf energy구역을 보이고 그 사이 구간의 천이점에서 급격하게 온도가 떨어지는 DBTT구간을 뚜렷하게 보이는 특성을 알 수 있었다.

동적하중 하에서의 강도적 불균질부를 갖는 용접이음재의 강도 및 파괴 특성 (Characteristics of Strength and Fracture in Strength Mismatched Joint by Dynamic Loading)

  • 안규백;;;방한서
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.55-63
    • /
    • 2003
  • Welded joint generally has heterogeneity of strength, material, and fracture toughness and it is important to understand the characteristics of material strength and fracture of welded joint considering heterogeneous effect. Characteristics of strength and fracture of an undermatched joint under dynamic loading was studied by round-bar tension tests and thermal elastic-plastic analyses in this paper. The strength and fracture of the undermatched joints should be evaluated based on the effects of the strain rate and the temperature including temperature rise during the dynamic loading. The differences of fracture characteristics like such as ductile-to-brittle transition behavior are well precisely explained from the stress-strain distribution obtained by numerical analysis.

압전구동기를 이용한 초미세 압입장치의 개발 (Development of Ultra-Micro Indentation Device using the PZT Actuator)

  • 박기태;박규열;홍동표
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.51-55
    • /
    • 1999
  • Recently, manufacturing work has been transformed to advanced technology intensive form from mass production with a little items required in the past. It was demanded that superior workpiece surface integrity. However, the study of ductile mode machining was proceeded actively.In this paper, it is developed Ultra-Micro Indentation Device using the PZT actuator. Experimentally, by using theUltra-Micro Indentation device, the micro fracture behavior of the silicon wafer was invesgated. It was possible that ductile-brittle transition point in ultimate surface of brittle material can be detected by adding an acoustic emission sensor system to the Ultra-Micro Indentation apparatus.

  • PDF

페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향 (Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure)

  • 이승용;정상우;황병철
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

전기비저항을 이용한 2.25Cr-1Mo 강 열화재의 미세조직 및 연성-취성천이온도 평가 (Evaluation of Microstructure and Ductile-Brittle Transition Temperature in Thermally aged 2.25Cr-1Mo Steel by Electrical Resistivity Measurement)

  • 박재원;권숙인
    • 비파괴검사학회지
    • /
    • 제22권3호
    • /
    • pp.284-291
    • /
    • 2002
  • 전기비저항법을 이용하여 2.25Cr-1Mo 강의 경년열화도를 평가하고자 하였다. 2.25Cr-1Mo 강이 $540^{\circ}C$에서 장시간 노출되었을 때 일어나는 미세조직 변화를 모사하기 위해 인공 열화를 실시하였으며 열화에 따른 미세조직 인자 (고용원소의 함량), 기계적 성질 (연성-취성 천이온도 ), 전기비저항을 측정하여 이들간의 상호관계를 구하고자 하였다. 열화재에서는 기지내의 고용 원소 (Mo 와 Cr)의 고갈이 나타났다. 연성-취성 천이온도는 열화 초반부에 급격히 증가 후 포화되는 경향을 보인 반면 전기비저항은 열화 초반부에 급격히 감소 후 포화되는 경향을 보였다. 즉, 열화 시간에 따른 연성-취성 천이온도의 변화 경향과 전기비저항의 변화는 서로 반대적으로 변화하는 관계를 나타내었다.

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF

알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성 (Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels)

  • 김상규;김재윤;윤태희;황병철
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

Ti-Nb-P 첨가 극저탄소 고강도 강판의 기계적 성질과 연성-취 천이거동 (Mechanical Property and Ductile-Brittle Transition Behavior of Ti-Nb-P Added Extra Low Carbon High Strength Steel Sheets)

  • 박종재;이오연;박영구;한상호;진광근
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.863-869
    • /
    • 2004
  • The purpose of this research is to investigate the mechanical property and ductile-brittle transition temperature of Ti-Nb-P added extra low carbon interstitial free steel having a tensile strength of 440 MPa. The mechanical property and transition temperature of hot rolled steel sheets were more influenced by the coiling temperature rather than by the small amount of alloying element. Further, at the same composition, the property of the specimen coiled at low temperature was superior to that obtained at higher coiling temperature. The fracture surface of 0.005C-0.2Si-1.43Mn steel coiled at $630^{\circ}C$ showed a ductile fracture mode at $-100^{\circ}C$, but coiling at $670^{\circ}C$ showed a transgranular brittle fracture mode at $-90^{\circ}C$. The galvannealed 0.006C-0.07Si-1.33Mn steel sheet annealed at $810^{\circ}C$ has tensile strength and elongation of 442.8 MPa and $36.6\%$, respectively. The transition temperature of galvannealed 0.006C-0.07Si-1.33Mn steel sheet was increased with a drawing ratio, and the transition temperature of the galvannealed 0.006C-0.07Si-1.33Mn steel was $-60^{\circ}C$ at a drawing ratio of 1.8

A plastic strain based statistical damage model for brittle to ductile behaviour of rocks

  • Zhou, Changtai;Zhang, Kai;Wang, Haibo;Xu, Yongxiang
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.349-356
    • /
    • 2020
  • Rock brittleness, which is closely related to the failure modes, plays a significant role in the design and construction of many rock engineering applications. However, the brittle-ductile failure transition is mostly ignored by the current statistical damage constitutive model, which may misestimate the failure strength and failure behaviours of intact rock. In this study, a new statistical damage model considering rock brittleness is proposed for brittle to ductile behaviour of rocks using brittleness index (BI). Firstly, the statistical constitutive damage model is reviewed and a new statistical damage model considering failure mode transition is developed by introducing rock brittleness parameter-BI. Then the corresponding damage distribution parameters, shape parameter m and scale parameter F0, are expressed in terms of BI. The shape parameter m has a positive relationship with BI while the scale parameter F0 depends on both BI and εe. Finally, the robustness and correctness of the proposed damage model is validated using a set of experimental data with various confining pressure.