• Title/Summary/Keyword: Dual-Band VCO

Search Result 21, Processing Time 0.027 seconds

Design of a Dual band CMOS Frequency Synthesizer for GSM and WCDMA (GSM / WCDMA 통신용 이중대역 CMOS 주파수 합성기 설계)

  • Han, Yun-Tack;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.435-436
    • /
    • 2008
  • This paper presents a dual band frequency synthesizer for GSM and Wideband CDMA which is designed in a standard 0.13um CMOS 1P6M process. The shared components include phase frequency detector (PFD), charge pump (CP), loop filter, integer frequency divider(128/129 DMP, 4bit PC, 3bit SC) and Low noise Ring-VCO. A high-speed low power dual modulus prescaler is proposed to operate up to 2.1GHz at 3.3V supply voltage with 2mW power consumption by simulation. The simulated phase noise of VCO is -101dBc/Hz at 200kHz offset frequency from 1.9GHz.

  • PDF

X-band Low Phase Noise VCO Using Dual Coupled Spiral Resonator (Dual Coupled Spiral 공진기를 이용한 X-대역 저위상 잡음 전압 제어 발진기)

  • Kim, Yang-Hyun;Seo, Chul-Hun;Ha, Sung-Jae;Lee, Bok-Hyung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.56-60
    • /
    • 2009
  • In this paper, a novel voltage controlled oscillator (VCO) has been presented by using the microstrip square multiple spiral resonator for reducing the phase noise of VCO. The microstrip multiple square resonator has the large coupling coefficient value, which makes a high Q value, and has reduced phase noise of VCO. The VCO with 1.8 V power supply has phase noise of -115.0~-117.34 dBc/Hz @100 kHz in the tuning range, 8.935~9.4 GHz. When it has been compared with microstrip square multiple spiral resonator and coventional spiral resonator, the reduced Q value has been -32.7 dB and -57.6 dB respectively. This low phase noise VCO could ve available to a VCO in X-band.

A Study on the Development of Dual-band PLL Frequency Synthesizer for miniature Repeater (초소형 중계기용 듀얼 밴드 주파수합성기 개발에 관한 연구)

  • 나영수;김진섭;강용철;변상기;나극환
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.37-40
    • /
    • 2003
  • The 1.63㎓, 2.33㎓ dual-band PLL frequency synthesizer has been developed for applications to the miniature repeater. The miniature dual-band repeater will be used at shopping mall, basements and underground parking lots. The in-loop 1.63㎓, 2.33㎓ dual-band PLL frequency synthesizer has been developed by designing Si BJT VCO and PLL loop circuits with Colpitts. The prototype of 1.63㎓, 2.33㎓ dual-band PLL frequency synthesizer of size 19${\times}$19${\times}$8(mm) has shown operating frequencies of 1.63㎓, 2.33㎓ ranges, RF output of 1dBm(PCS), 1dBm(IMT-2000), phase noise of -100 dBc/Hz(PCS), -95dBc/Hz(IMT-2000) at 10KHz offset, harmonics suppression of -24dB c(PCS), -15dBc(IMT-2000).

  • PDF

Low Phase Noise VCO with X -Band Using Metamaterial Structure of Dual Square Loop (메타구조의 이중 사각 루프를 이용한 X-Band 전압 제어 발진기 구현에 관한 연구)

  • Shin, Doo-Soub;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.84-89
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator (VCO) using the microstrip square open loop dual split ring resonator is presented for reducing the phase noise. The square-shaped dual split ring resonator having the form of the microstrip square open loop is investigated to reduce the phase noise. Compared with the microstrip square open loop resonator and the microstrip square open loop split ring resonator as well as the conventional microstrip line resonator, the microstrip square dual split ring resonator has the larger coupling coefficient value, which makes a higher Q value, and has reduced the phase noise of VCO. The VCO with 1.7V power supply has the phase noise of -123.2~-122.0 dBc/Hz @ 100 kHz in the tuning range, 11.74~11.75 GHz. The figure of merit (FOM) of this VCO is-214.8~-221.7 dBc/Hz dBc/Hz @ 100 kHz in the same tuning range. Compared with VCO using the conventional microstrip line resonator, VCO using microstrip square open loop resonator, the phase noise of VCO using the proposed resonator has been improved in 26 dB, 10 dB, respectively.

A Design of PLL for 6 Gbps Transmitter in Display Interface Application (디스플레이 인터페이스에 적용된 6 Gbps급 송신기용 PLL(Phase Locked Loop) 설계)

  • Yu, Byeong-Jae;Cho, Hyun-Mook
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • Recently, frequency synthesizers are being designed in two ways narrow-band loop or dual-loop for wide-band to reduce the phase noise. However, dual-loop has the disadvantage of center frequency mismatch and requiring an extra loop. In this paper, we propose a new structure that supports a range of 800Mhz ~ 3Ghz with multiple control of the single-loop frequency synthesizer without another loop. The control voltage of the VCO(coarse, fine) will be fixed, and finally the VCO will have a low Kvco. The frequency synthesizer is simulated using UMC $0.11{\mu}m$ process, proposed frequency synthesizer can be used in a variety of applications in the future.

An Ultra Low Cost, Dual-band VCO Design at GSM/DCN (저 비용 듀얼 대역 전압 제어 발진기 설계)

  • 오태성;이영훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.235-238
    • /
    • 2001
  • 단일 단말기로부터 멀티 통신이 가능하게 됨에 따라 광대역 또는 듀얼대역에서 사용되는 RF 소자 개발이 중요시되고 있다. 그러므로 소형, 저 비용의 멀티대역 VCO(Voltage Controlled Oscillator)개발이 요구된다. 본 논문에서 GSM/DCN 대역에서 사용 가능한 듀얼밴드 VCO을 설계하였다. 하나의 발진부, 듀얼 공진부, 완충증폭기, 스위치회로로 구성되었으며, 위상 보정 기법을 이용하여 각 밴드에 대한 발진 조건을 만족시키므로 사용 부품의 수를 줄일 수 있어 저 비용, 소형화, 낮은 위상잡음(phase noise)을 얻을 수 있다. 설계된 듀얼 VCO는 GSM 대역에서 -110dBc/Hz(100kHz offset) 이하의 위상 잡음과 DCN 대역에서 -108dBc/Hz(100kHz offset)의 위상 특성을 보인다. 출력전력은 0$\pm$3dBm이며 소비전력 7mA로 만족할만한 성능을 보인다.

  • PDF

Design of a 5.2GHz/2.4GHz Dual band CMOS Frequency Synthesizer for WLAN (WLAN을 위한 5.2GHz/2.4GHz 이중대역 주차수 합성기의 설계)

  • Kim, Kwang-Il;Lee, Sang-Cheol;Yoon, Kwang-Sub;Kim, Seok-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.134-141
    • /
    • 2007
  • This paper presents a frequency synthesizer(FS) for 5.2GHz/2.4GHz dual band wireless applications which is designed in a standard $0.18{\mu}m$ CMOS1P6M process. The 2.4GHz frequency is obtained from the 5.2GHz output frequency of Voltage Controlled Oscillator (VCO) by using the Switched Capacitor (SC) and the divider-by-2. Power dissipations of the proposed FS and VCO are 25mW and 3.6mW, respectively. The tuning range of VCO is 700MHz and the locking time is $4{\mu}s$. The simulated phase noise of PLL is -101.36dBc/Hz at 200kHz offset frequency from 5.0GHz with SCA circuit on.

A CMOS Frequency divider for 2.4/5GHz WLAN Applications with a Simplified Structure

  • Yu, Q.;Liu, Y.;Yu, X.P.;Lim, W.M.;Yang, F.;Zhang, X.L.;Peng, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • In this paper, a dual-band integer-N frequency divider is proposed for 2.4/5.2 GHz multi-standard wireless local area networks. It consists of a multi-modulus imbalance phase switching prescaler and two all-stage programmable counters. It is able to provide dual-band operation with high resolution while maintaining a low power consumption. This frequency divider is integrated with a 5 GHz VCO for multi-standard applications. Measurement results show that the VCO with frequency divider can work at 5.2 GHz with a total power consumption of 22 mW.

Fully Integrated Design of a Low-Power 2.5GHz/0.5GHz CMOS Dual Frequency Synthesizer (저전력 2.5GHz/0.5GHz CMOS 이중 주파수합성기 완전 집적화 설계)

  • Kang, Ki-Sub;Oh, Gun-Chang;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.15-23
    • /
    • 2007
  • This paper describes a dual frequency synthesizer designed in a 0.2$\mu$m CMOS technology for wireless LAN applications. The design is focused mainly on low-power characteristics. Power dissipation is minimized especially in VCO and prescaler design. The designed synthesizer includes all building blocks for elimination of external components, other than the crystal. Its operating frequency can be programmed by external data. It operates in the frequency range of 2.3GHz to 2.7GHz (RF) and 250MHz to 800MHz (IF) and consumes 5.14mA at 2.5GHz and 1.08mA at 0.5GHz from a 2.5V supply. The measured phase noise is -85dBc/Hz in-band and -105dBc/Hz at 1MHz offset at IF band. The die area is 1.7mm$\times$1.7mm.

  • PDF

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF