• 제목/요약/키워드: Dual specificity protein phosphatase

검색결과 19건 처리시간 0.03초

Structure and catalytic mechanism of human protein tyrosine phosphatome

  • Kim, Seung Jun;Ryu, Seong Eon
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.693-699
    • /
    • 2012
  • Together with protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs) serve as hallmarks in cellular signal transduction by controlling the reversible phosphorylation of their substrates. The human genome is estimated to encode more than 100 PTPs, which can be divided into eleven sub-groups according to their structural and functional characteristics. All the crystal structures of catalytic domains of sub-groups have been elucidated, enabling us to understand their precise catalytic mechanism and to compare their structures across all sub-groups. In this review, I describe the structure and mechanism of catalytic domains of PTPs in the structural context.

Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4+ T Cell Lineages

  • Min-Hee Kim;Chang-Woo Lee
    • IMMUNE NETWORK
    • /
    • 제23권2호
    • /
    • pp.12.1-12.17
    • /
    • 2023
  • Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.

Novel Genetic Associations Between Lung Cancer and Indoor Radon Exposure

  • Choi, Jung Ran;Koh, Sang-Baek;Park, Seong Yong;Kim, Hye Run;Lee, Hyojin;Kang, Dae Ryong
    • Journal of Cancer Prevention
    • /
    • 제22권4호
    • /
    • pp.234-240
    • /
    • 2017
  • Background: Lung cancer is the leading cause of cancer-related death worldwide, for which smoking is considered as the primary risk factor. The present study was conducted to determine whether genetic alterations induced by radon exposure are associated with the susceptible risk of lung cancer in never smokers. Methods: To accurately identify mutations within individual tumors, next generation sequencing was conduct for 19 pairs of lung cancer tissue. The associations of germline and somatic variations with radon exposure were visualized using OncoPrint and heatmap graphs. Bioinformatic analysis was performed using various tools. Results: Alterations in several genes were implicated in lung cancer resulting from exposure to radon indoors, namely those in epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), NK2 homeobox 1 (NKX2.1), phosphatase and tensin homolog (PTEN), chromodomain helicase DNA binding protein 7 (CHD7), discoidin domain receptor tyrosine kinase 2 (DDR2), lysine methyltransferase 2C (MLL3), chromodomain helicase DNA binding protein 5 (CHD5), FAT atypical cadherin 1 (FAT1), and dual specificity phosphatase 27 (putative) (DUSP27). Conclusions: While these genes might regulate the carcinogenic pathways of radioactivity, further analysis is needed to determine whether the genes are indeed completely responsible for causing lung cancer in never smokers exposed to residential radon.

천마(Gastrodia elata)로부터 분리한 VHR DS-PTPase 저해 물질 (The VHR Dual-Specificity Protein Tyrosine Phosphatase (DS-PTPase) Inhibitor Isolated from Gastrodia elata)

  • 이명선;오원근;배은영;안순철;손천배;히로유키 오사다;안종석
    • 한국식품과학회지
    • /
    • 제34권3호
    • /
    • pp.505-509
    • /
    • 2002
  • 천마의 methanol 추출물로부터 VHR DS-PTPase 저해 물질을 분리하여 이를 HREI-MS와 $^1H-NMR$, $^{13}C-NMR$, DEPT 등의 기기 분석 자료에 의하여 baicalein으로 구조를 동정 하였다. 이 물질은 VHR에 대하여 $2.4{\mu}M$$IC_{50}$값을 나타내었고 T-cell PTPase나 PPase 1과 같은 다른 단백질 탈인산화 효소에 대하여는 저해 활성을 나타내지 않았다. 또한 7종류의 인간 암세포주(흑색종 세포주인 LOX-IMVI, 폐암 세포주인 NCI H23과 A549, 대장암 세포주인 HCT 116와 SW 620, 전립선암 세포주인 PC-3와 백혈병 세포주인 MOLT 4F)에 대한 세포독성을 조사하여 본 결과 $5.26{\sim}12.93\;{\mu}g/mL$에서 $GI_{50}$값을 나타내었다.

Discovery of Novel DUSP4 Inhibitors through the Virtual Screening with Docking Simulations

  • Park, Hwangseo;Jeon, Tae Jin;Chien, Pham Ngoc;Park, So Ya;Oh, Sung Min;Kim, Seung Jun;Ryu, Seong Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2655-2659
    • /
    • 2014
  • Dual specificity protein phosphatase 4 (DUSP4) has been considered a promising target for the development of therapeutics for various human cancers. Here, we report the first example for a successful application of the structure-based virtual screening to identify the novel small-molecule DUSP4 inhibitors. As a consequence of the virtual screening with the modified scoring function to include an effective molecular solvation free energy term, five micromolar DUSP4 inhibitors are found with the associated $IC_{50}$ values ranging from 3.5 to $10.8{\mu}M$. Because these newly identified inhibitors were also screened for having desirable physicochemical properties as a drug candidate, they may serve as a starting point of the structure-activity relationship study to optimize the medical efficacy. Structural features relevant to the stabilization of the new inhibitors in the active site of DUSP4 are discussed in detail.

Tumor Promoting Function of DUSP10 in Non-Small Cell Lung Cancer Is Associated With Tumor-Promoting Cytokines

  • Xing Wei;Chin Wen Png;Madhushanee Weerasooriya;Heng Li;Chenchen Zhu;Guiping Chen;Chuan Xu;Yongliang Zhang;Xiaohong Xu
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.34.1-34.15
    • /
    • 2023
  • Lung cancer, particularly non-small cell lung cancer (NSCLC) which contributes more than 80% to totally lung cancer cases, remains the leading cause of cancer death and the 5-year survival is less than 20%. Continuous understanding on the mechanisms underlying the pathogenesis of this disease and identification of biomarkers for therapeutic application and response to treatment will help to improve patient survival. Here we found that a molecule known as DUSP10 (also known as MAPK phosphatase 5) is oncogenic in NSCLC. Overexpression of DUSP10 in NSCLC cells resulted in reduced activation of ERK and JNK, but increased activation of p38, which was associated with increased cellular growth and migration. When inoculated in immunodeficient mice, the DUSP10-overexpression NSCLC cells formed larger tumors compared to control cells. The increased growth of DUSP10-overexpression NSCLC cells was associated with increased expression of tumor-promoting cytokines including IL-6 and TGFβ. Importantly, higher DUSP10 expression was associated with poorer prognosis of NSCLC patients. Therefore, DUSP10 could severe as a biomarker for NSCLC prognosis and could be a target for development of therapeutic method for lung cancer treatment.

LncRNA PART1 Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating TFAP2C/DUSP5 Axis via miR-302a-3p

  • Min Zeng;Xin Wei;Jinchao Zhou;Siqi Luo
    • Korean Circulation Journal
    • /
    • 제54권5호
    • /
    • pp.233-252
    • /
    • 2024
  • Background and Objectives: Myocardial ischemia-reperfusion injury (MIRI) refers to the damage of cardiac function caused by restoration of blood flow perfusion in ischemic myocardium. However, long non-coding RNA prostate androgen regulated transcript 1 (PART1)'s role in MIRI remain unclear. Methods: Immunofluorescence detected LC3 expression. Intermolecular relationships were verified by dual luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assays analyzed cell viability and apoptosis. The release of lactate dehydrogenase was tested via enzyme-linked immunosorbent assay (ELISA). Left anterior descending coronary artery surgery induced a MIRI mouse model. Infarct area was detected by 2,3,5-triphenyltetrazolium chloride staining. Hematoxylin and eosin staining examined myocardial injury. ELISA evaluated myocardial marker (creatine kinase MB) level. Results: PART1 was decreased in hypoxia/reoxygenation (H/R) induced AC16 cells and MIRI mice. PART1 upregulation attenuated the increased levels of Bax, beclin-1 and the ratio of LC3II/I, and enhanced the decrease of Bcl-2 and p62 expression in H/R-treated cells. PART1 upregulation alleviated H/R-triggered autophagy and apoptosis via miR-302a-3p. Mechanically, PART1 targeted miR-302a-3p to upregulate transcription factor activating enhancer-binding protein 2C (TFAP2C). TFAP2C silencing reversed the protected effects of miR-302a-3p inhibitor on H/R treated AC16 cells. We further established TFAP2C combined to dual-specificity phosphatase 5 (DUSP5) promoter and activated DUSP5. TFAP2C upregulation suppressed H/R-stimulated autophagy and apoptosis through upregulating DUSP5. Overexpressed PART1 reduced myocardial infarction area and attenuated MIRI in mice. Conclusion: PART1 improved the autophagy and apoptosis in H/R-exposed AC16 cells through miR-302a-3p/TFAP2C/DUSP5 axis, which might provide novel targets for MIRI treatment.

Effects of an in vitro vitamin D treatment on the inflammatory responses in visceral adipose tissue from Ldlr-/- mice

  • Deok Hoon Kwon;Jungwon Hwang;Hyeyoung You;Na Young Kim;Ga Young Lee;Sung Nim Han
    • Nutrition Research and Practice
    • /
    • 제18권1호
    • /
    • pp.19-32
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Atherosclerosis is associated with increased inflammation in the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs and adipocytes from atherosclerotic mice. MATERIALS/METHODS: C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr-/-) mice were fed a HFC diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune cell population in SVCs, and the expression of the genes involved in the inflammatory signaling pathway in SVCs were determined. RESULTS: The numbers of total macrophages and SVCs per mouse were higher in OB and OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by adipocytes from all 3 groups. CONCLUSIONS: These findings suggest that vitamin D can attribute to the inhibition of the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory cytokine production.

효소활성 증가 돌연변이를 함유한 DUSP19의 결정구조 (Crystal Structure of an Activity-enhancing Mutant of DUSP19)

  • 주다경;전태진;류성언
    • 생명과학회지
    • /
    • 제28권10호
    • /
    • pp.1140-1146
    • /
    • 2018
  • 이중탈인산화효소(DUSP)는 성장인자활성 단백질키나제(MAPK)를 조절해서 세포성장과 분화에 관여하며 암, 당뇨병, 면역질환, 신경질환의 신약개발표적이다. DUSP 단백질군에 속하는 DUSP19는c-Jun N-말단 키나제(JNK)를 조절하며 골관절염의 질환화과정에 관여한다. 우리는 야생형 DUSP19 에 비하여 상당히 활성이 증가된 cavity 형성 돌연변이인 DUSP19-L75A의 결정구조를 규명하였다. 결정구조는 Leu75의 곁가지가 없어진 결과로 cavity가 잘 형성되어 있는 것을 보여주며, 활성부위에 결합한 황이온이 회전된 형태로 존재하는 것을 보여준다. Cavity 형성에도 불구하고 cavity를 둘러싸고 있는 잔기들은 그다지 재조정되지 않은 것으로 나타나며 그 대신에 멀리 떨어진 트립토판 잔기가 소수성결합을 강화하고 있는 것으로 나타나서 L75A 돌연변이의 접힘은 cavity 부위의 재조정이 아니라 글로벌 접힘 에너지 최소화 기작에 의해 안정화 되었음을 발견할 수 있었다. 회전된 활성화부위 황이온의 구조는 인산화티로신 잔기와 유사함이 발견되어 L75A 돌연변이가 최적의 활성화형태를 유도했다는 것을 알 수 있었다. 내부 cavity에 의한 활성증가현상과 이에 대한 구조적 정보는 DUSP19의 알로스테릭 조절과 치료제 개발에 정보를 제공한다.