• Title/Summary/Keyword: Dual singular function method

Search Result 7, Processing Time 0.022 seconds

ALGORITHMS TO APPLY FINITE ELEMENT DUAL SINGULAR FUNCTION METHOD FOR THE STOKES EQUATIONS INCLUDING CORNER SINGULARITIES

  • JANG, DEOK-KYU;PYO, JAE-HONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.115-138
    • /
    • 2019
  • The dual singular function method [DSFM] is a solver for corner sigulaity problem. We already construct DSFM in previous reserch to solve the Stokes equations including one singulairity at each reentrant corner, but we find out a crucial incorrection in the proof of well-posedness and regularity of dual singular function. The goal of this paper is to prove accuracy and well-posdness of DSFM for Stokes equations including two singulairities at each corner. We also introduce new applicable algorithms to slove multi-singulrarity problems in a complicated domain.

EFFICIENT PARAMETERS OF DECOUPLED DUAL SINGULAR FUNCTION METHOD

  • Kim, Seok-Chan;Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.281-292
    • /
    • 2009
  • The solution of the interface problem or Poisson problem with concave corner has singular perturbation at the interface corners or singular corners. The decoupled dual singular function method (DDSFM) which exploits the singular representations of the solutions was suggested in [3, 9] and estimated optimal accuracy in [10]. The convergence rates consist with theoretical results even for the problems with very strong singularity, with the efficiency depending on parameters used in the methods. Furthermore the errors in $L^2$ and $L^\infty$-spaces display some oscillation, in the cases with meshsize not small enough. In this paper, we present an answer to remove the oscillation via numerical experiments. We observe the effects of parameters in DDSFM, and show the consisting efficiency of the method over the strong singularity.

  • PDF

FINITE ELEMENT DUAL SINGULAR FUNCTION METHODS FOR HELMHOLTZ AND HEAT EQUATIONS

  • JANG, DEOK-KYU;PYO, JAE-HONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.101-113
    • /
    • 2018
  • The dual singular function method(DSFM) is a numerical algorithm to get optimal solution including corner singularities for Poisson and Helmholtz equations. In this paper, we apply DSFM to solve heat equation which is a time dependent problem. Since the DSFM for heat equation is based on DSFM for Helmholtz equation, it also need to use Sherman-Morrison formula. This formula requires linear solver n + 1 times for elliptic problems on a domain including n reentrant corners. However, the DSFM for heat equation needs to pay only linear solver once per each time iteration to standard numerical method and perform optimal numerical accuracy for corner singularity problems. Because the Sherman-Morrison formula is rather complicated to apply computation, we introduce a simplified formula by reanalyzing the Sherman-Morrison method.

SINGULAR AND DUAL SINGULAR FUNCTIONS FOR PARTIAL DIFFERENTIAL EQUATION WITH AN INPUT FUNCTION IN H1(Ω)

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.603-610
    • /
    • 2022
  • In [6, 7] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. They considered a partial differential equation with the input function f ∈ L2(Ω). In this paper we consider a PDE with the input function f ∈ H1(Ω) and find the corresponding singular and dual singular functions. We also induce the corresponding extraction formula which are the basic element for the approach.

NOTES ON NEW SINGULAR FUNCTION METHOD FOR DOMAIN SINGULARITIES

  • Kim, Seok-Chan;Pyo, Jae-Hong;Xie, Shu-Sen;Yi, Su-Cheol
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.701-721
    • /
    • 2007
  • Recently, a new singular function(NSF) method was posed to get accurate numerical solution on quasi-uniform grids for two-dimensional Poisson and interface problems with domain singularities by the first author and his coworkers. Using the singular function representation of the solution, dual singular functions, and an extraction formula for stress intensity factors, the method poses a weak problem whose solution is in $H^2({\Omega})$ or $H^2({\Omega}_i)$. In this paper, we show that the singular functions, which are not in $H^2({\Omega})$, also satisfy the integration by parts and note that this fact suggests the possibility of different choice of the weak formulations. We show that the original choice of weak formulation of NSF method is critical.

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.