• Title/Summary/Keyword: Dual input single output

Search Result 49, Processing Time 0.022 seconds

A Novel Input and Output Harmonic Elimination Technique for the Single-Phase PV Inverter Systems with Maximum Power Point Tracking (최대출력추종 제어를 포함한 단상 태양광 인버터를 위한 새로운 입출력 고조파 제거법)

  • Amin, Saghir;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.207-209
    • /
    • 2019
  • This paper proposes a grid-tied photovoltaic (PV) system, consisting of Voltage-fed dual-active-bridge (DAB) dc-dc converter with single phase inverter. The proposed converter allows a small dc-link capacitor, so that system reliability can be improved by replacing electrolytic capacitors with film capacitors. The double line frequency free maximum power point tracking (MPPT) is also realized in the proposed converter by using Ripple Correlation method. First of all, to eliminate the double line frequency ripple which influence the reduction of DC source capacitance, control is developed. Then, a designing of Current control in DQ frame is analyzed and to fulfill the international harmonics standards such as IEEE 519 and P1547, $3^{rd}$ harmonic in the grid is directly compensated by the feedforward terms generated by the PR controller with the grid current in stationary frame to achieve desire Total Harmonic Distortion (THD). 5-kW PV converter and inverter module with a small dc-link film capacitor was built in the laboratory with the proposed control and MPPT algorithm. Experimental results are given to validate the converter performance.

  • PDF

Power Decoupling Control of the Bidirectional Converter to Eliminate the Double Line Frequency Ripple (더블라인 주파수 제거를 위한 양방향 컨버터의 전력 디커플링 제어)

  • Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.62-64
    • /
    • 2018
  • In two-stage single-phase inverters, inherent double line frequency component is present at both input and output of the front-end converter. Generally large electrolytic capacitors are required to eliminate the ripple. It is well known that the low frequency ripple shortens the lifespan of the capacitor hence the system reliability. However, the ripple can hardly be eliminated without the hardware combined with an energy storage device or a certain control algorithm. In this paper, a novel power-decoupling control method is proposed to eliminate the double line frequency ripple at the front-end converter of the DC/AC power conversion system. The proposed control algorithm is composed of two loop, ripple rejection loop and average voltage control loop and no extra hardware is required. In addition, it does not require any information from the phase-locked-loop (PLL) of the inverter and hence it is independent of the inverter control. In order to prove the validity and feasibility of the proposed algorithm a 5kW Dual Active Bridge DC/DC converter and a single-phase inverter are implemented, and experimental results are presented.

  • PDF

High Voltage SMPS Design based on Dual-Excitation Flyback Converter (이중 여자 플라이백 기반 고압 SMPS 설계)

  • Yang, Hee-Won;Kim, Seong-Ae;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2017
  • This paper aims to develop an SMPS topology for handling a high range of input voltages based on a DC-DC flyback converter circuit. For this purpose, 2 capacitors of the same specifications were serially connected on the input terminal side, with a flyback converter of the same circuit configuration serially connected to each of them, so as to achieve high input voltage and an effect of dividing input voltage. The serially connected flyback converters have the transformer turn ratio of 1:1, so that each coil is used for the winding of a single transformer, which is a characteristic of doubly-fed configuration and enables the correction of input capacitor voltage imbalance. In addition, a pulse transformer was designed and fabricated in a way that can achieve the isolation and noise robustness of the PWM output signal of the PWM controller that applies gate voltage to individual flyback converter switches. PSIM simulation was carried out to verify such a structure and confirm its feasibility, and a 100W class stack was fabricated and used to verify the feasibility of the proposed high voltage SMPS topology.

Time-series 방법으로 모델링한 절삭역학에 의한 공구마모감시 방법

  • 권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.97-101
    • /
    • 1993
  • In this work, the imaginary part of the inner modulation transfer function of the cutting dynamics is introduced for tool wear monitoring. Time-series method is utilized to construct the generalthree dimensional cutting dynamics whose imaginary part of the inner modulation transfer funcition shows the proportionality to tool wear at the natural frequency of the machine tool dynamics. This modelis reduced to single-input single- output model without altering the proporitonality characteristics to tool wear and implemented to the dual computer system in which one computer performs measurement while the other calculates the imaginary part of the inner modulation transfer function of th cutting dynamics by the batchleast square method. The values of the imaginary part at the natural frequencyof the machine tool structure in the cutting direction are compared to the one calculated during machining with a brand new tool to decide the current stants of the tool. The experiments shows the relevance of the proposed concept.

Tool Wear Monitoring Scheme by Modeling of the Cutting Dynamics by Time-series Method (Time-series 방법으로 모델링한 절삭역학에 의한 공구마모감시방법)

  • Kwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.94-103
    • /
    • 1993
  • In this work, the imaginary part of the inner modulation transfer function of the cutting dynamics is introduced for tool wear monitoring. Time-series method is utilized to construct the general three dimensional cutting dynamics whose imaginary part of the inner modulation transfer funcition shows the proportionality to tool wear at the natural frequency of the machine tool dynamics. Thus model is reduced to single-input single-output model without altering the proportionality characteristics to tool wear and implemented to the dual computer system in which one computer performs measurement while the other calculates the imaginary part of the inner modulation transfer function of the cutting dynamics by the batch least square method. The values of the imaginary part at the natural requency of the machine tool structure in the cutting direction are compared to the one calculated during machining with a brand new tool to decide the current status of the tool. The experiments shows the relevance of the proposed concept.

  • PDF

Design of Dual-Polarization Antenna with High Cross-Polarization Discrimination (높은 교차편파 분리도를 가지는 이중편파 안테나 설계)

  • Lee, Sang-Ho;Oh, Taeck-Keun;Ha, Jung-Je;Lee, Yong-Shik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • In a small cell base station used in densely populated areas, a dual polarized multiple antenna(MIMO) is mainly used to increase the cell capacity. This paper demonstrates a dual-polarization antenna with high cross-polarization discrimination(XPD) that can improve the capacity of a small cell using a dual polarization multiple antenna (MIMO). By using the symmetric structure and differential feeding, high XPD in all directions is achieved. In addition, a very similar radiation pattern is observed between each polarization. Because of high XPD and similar radiation pattern in all directions, proposed antenna is well adopted for small-cell multiple-input multiple-output(MIMO) system. Experimental results shows that the proposed antenna has a bandwidth of 180 MHz (2.51~2.7 GHz), a maximum gain of 4.5 dBi (3.5~4.5 dBi), and a half-power beam width of 85 degrees. In addition, average XPD of 26.4 dB in all directions, more than 13.8 dB increase than previous dual-polarization antennas which use single emitter by using different feeding or selectively use polarization through switching.

Single-Inductor Multiple-Output DC-DC Converter with Negative Feedback Selection Circuit (부궤환 선택회로를 갖는 단일 인덕터 다중 출력 직류-직류 변환기)

  • Gong, Jung-Chul;Roh, Yong-Seong;Moon, Young-Jin;Choi, Woo-Seok;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.23-30
    • /
    • 2011
  • This paper presents a Single-Inductor Multiple-Output (SIMO) DC-DC Converter with a negative feedback selection circuit to improve a regulation property at light load and to generate independent multiple outputs. The conventional SIMO DC-DC converter with a fixed negative feedback circuit cannot regulate correctly at light load. The SIMO DC-DC converter with the proposed negative feedback selection circuit has been designed in 0.35um 2-poly 3-metal BCDMOS. This converter is dual output boost converter with the 1.5V input and 2.5V, 3.0V output. The power conversion efficiency varies from 59% at 10mA loads to 85% at 50mA loads.

A Control Strategy Based on Small Signal Model for Three-Phase to Single-Phase Matrix Converters

  • Chen, Si;Ge, Hongjuan;Zhang, Wenbin;Lu, Song
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1456-1467
    • /
    • 2015
  • This paper presents a novel close-loop control scheme based on small signal modeling and weighted composite voltage feedback for a three-phase input and single-phase output Matrix Converter (3-1MC). A small non-polar capacitor is employed as the decoupling unit. The composite voltage weighted by the load voltage and the decoupling unit voltage is used as the feedback value for the voltage controller. Together with the current loop, the dual-loop control is implemented in the 3-1MC. In this paper, the weighted composite voltage expression is derived based on the sinusoidal pulse-width modulation (SPWM) strategy. The switch functions of the 3-1MC are deduced, and the average signal model and small signal model are built. Furthermore, the stability and dynamic performance of the 3-1MC are studied, and simulation and experiment studies are executed. The results show that the control method is effective and feasible. They also show that the design is reasonable and that the operating performance of the 3-1MC is good.

Development of 110 kW AC Motor Vector Drive for 450 Ton Gantry Crane (450톤 크레인용 110 kW 유도전동기 벡터 드라이버 개발에 관한 연구)

  • Kim, Young-Seok;Kim, Seong-Yoon;Lee, Hae-Keu;Ahn, Byung-Ku;Kim, Sung-Jun;Seok, Jul-Ki;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.268-270
    • /
    • 1995
  • In crane drives, DC motor has been most widely used due to simple control characteristic and favorable transient behavior. Nowadays, however, the squirrel cage induction motor is known as an attractive candidate due to elimination of all sliding electrical contacts, resulting in an exceedingly simple and rugged construction. Especially, in hoist application, the smooth torque control and four quadrant operation are essential. In this paper, an operation of dual inverters with common DC bus fed by vector controlled induction motor is described. Single DSP is employed as a main processor to control dual inverters and communicates each input/output signal with PLC. As well as giving a detailed expression, full simulation and experimental results are presented.

  • PDF

Performance Analysis of Dual-Hop Cooperative Transmission with Best Relay Selection in a Rayleigh Fading Channel

  • Nessa, Ahasanun;Lee, Woo-Yong;Kim, Yong-Sun;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.530-539
    • /
    • 2009
  • Wireless Relaying is a promising solutions to overcome the channel impairments and provides high data rate coverage that appear for beyond 3G mobile communications. In this paper we present end to end BER performance of dual hop wireless communication systems equipped with multiple Decode and Forward relays over Rayleigh fading channel with the best relay selection. We compare the BER performance of the best relay with the BER performance of single relay. We select the best relay based on the end to end channel conditions. We further calculate the outage probability of the best relay. It is shown that the outage probability of the best relay is equivalent to the outage probability when all relays take part in the transmission. We apply Orthogonal Space Time Block coding(OSTBC) at the source terminal. Numerical and simulation results are presented to verify our analysis.