• Title/Summary/Keyword: Dual friction observer

Search Result 5, Processing Time 0.017 seconds

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

A Study on the Intelligent Position Control System Using Sliding Mode and Friction Observer (슬라이딩 모드와 마찰관측기를 이용한 강인한 지능형 위치 제어시스템 연구)

  • Han, Seong-Ik;Lee, Yong-Jin;Lee, Kwon-Soon;Nam, Hyun-Do
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.163-172
    • /
    • 2010
  • A robust positioning control system has been studied using a friction parameter observer and a recurrent fuzzy neural network based on the sliding model. To estimate a nonlinear friction parameters of the LuGre friction model, a dual friction model-based observer is introduced. In addition, an approximating method for a system uncertainty has been developed using a recurrent fuzzy neural network technique to improve positioning performance. Experimental results have been presented to validate the performance of a proposed intelligent compensation scheme.

Tracking Control of Mechanical Systems with Partially Known Friction Model

  • Yang, Hyun-Suk;Martin C. Berg;Hong, Bum-Il
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.311-318
    • /
    • 2002
  • Two adaptive nonlinear friction compensation schemes are proposed for second-order nonlinear mechanical systems with a partially known nonlinear dynamic friction model to achieve asymptotic position and velocity tracking. The first scheme has auxiliary filtered states so that a simple open-loop observer can be used. The second one has a dual-observer structure to estimate two different nonlinear aspects of the friction state. Conditions for the parameter estimates to converge to the true parameter values are presented. Simulation results are utilized to show control performance and to demonstrate the convergence of the parameter estimates to their true values.

Design of Adaptive Controller to Compensate Dynamic Friction for a Benchmark Robot (벤치마크 로봇의 동적 마찰 보상을 위한 적응 제어기 설계)

  • Kim, In-Hyuk;Cho, Kyoung-Hoon;Son, Young Ik;Kim, Pil-Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.202-208
    • /
    • 2014
  • Friction force on robot systems is highly nonlinear and especially disturbs precise control of the robots at low speed. This paper deals with the dynamic friction compensation problem of a well-known one-link benchmark robot system. We consider the LuGre model because the model can successfully represent dynamic characteristics and various effects of friction phenomenon. The proposed controller is constructed as two parts. An adaptive controller based on dual observers is used to estimate and compensate the dynamic friction. In order to attenuate the friction estimation error and other disturbances, PI observer is additionally designed. Through the computer simulations with the benchmark system, this paper first examines the effects of nonlinear dynamic friction on the control performance of the benchmark robot system. Next, it is shown that the control performance against the dynamic friction is improved by using the proposed controller.

The Mechanical Characteristic Analysis and Improvement of Precision Position Control System with AC Servo Motor and Ball Screw (AC Servo Motor와 Ball screw를 이용한 정밀 위치제어시스템의 기계적 특성 분석 및 개선)

  • Ko, Su-Chang;Jin, Kyoung-Bog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.31-36
    • /
    • 2007
  • Effect of coulomb friction and backlash on the single loop position control has been studied for the precision position control. We have showed the limit cycle on the single loop system which used a ball screw that had the backlash. Also, we have made an inner loop with a classical velocity and torque controller which was forcing the current of d axis to be zero by using a permanent-magnet synchronous motor and composed the outer loop with linear encoder for sensing a position of the loader. Also, we have used least squares fit(LSF) observer for reducing noise when we got velocity from position outputs. We have shown a good result by using the dual loop through simulation and experiment.

  • PDF