Browse > Article
http://dx.doi.org/10.5370/KIEEP.2010.59.2.163

A Study on the Intelligent Position Control System Using Sliding Mode and Friction Observer  

Han, Seong-Ik (동아대학교 전기공학과)
Lee, Yong-Jin (한국폴리텍 항공대학 항공전기과)
Lee, Kwon-Soon (동아대학교 전기공학과)
Nam, Hyun-Do (단국대학교 전자전기공학부)
Publication Information
The Transactions of the Korean Institute of Electrical Engineers P / v.59, no.2, 2010 , pp. 163-172 More about this Journal
Abstract
A robust positioning control system has been studied using a friction parameter observer and a recurrent fuzzy neural network based on the sliding model. To estimate a nonlinear friction parameters of the LuGre friction model, a dual friction model-based observer is introduced. In addition, an approximating method for a system uncertainty has been developed using a recurrent fuzzy neural network technique to improve positioning performance. Experimental results have been presented to validate the performance of a proposed intelligent compensation scheme.
Keywords
Sliding Mode Control; Dynamic Friction; Friction Estimator; Recurrent Fuzzy Neural Network;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huang, S. N., Tan, K. K., and Lee, T. H., "Adaptive friction compensation using neural network approximation," IEEE Trans. Syst. Man Cybern., Vol. 30(4), pp. 551-557, 2000.   DOI   ScienceOn
2 Peng, J. Z., Wang, Y. N., and Sun, W., "Trajectory tracking control for mobile robot using recurrent fuzzy cerebellar model articulation controller," Neural Inform. Process.-Lett. Rev., Vol. 11(1), pp. 15-23, 2007.
3 Slotine, J. E. and Li, W., Applied nonlinear control, 1991 (Prentice-Hall, New Jersey).
4 Lin, F. J. and Wai, R. J., "Robust recurrent fuzzy neural network control for linear synchronous motor drive system," Neurocomputing, Vol. 50, pp. 365-390, 2003.   DOI   ScienceOn
5 Lin, C. H., "Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive," IEE Proc. B, Electr. Power Appl., Vol. 151(6), pp. 711-724, 2004.   DOI   ScienceOn
6 Selmic, R. and Lewis, F. L., "Neural network approximation of piecewise continuous functions: application to friction compensation," IEEE Trans. Neural Netw., Vol. 50(5), pp. 745-751, 2002.
7 Wai, R. J. and Lin, F. J., "Fuzzy neural network sliding-mode position controller for induction servo motor drive," IEE Proc. B, Electr. Power Appl., Vol. 146(3), pp. 297-308, 1999.   DOI   ScienceOn
8 Lin, C. T. and Lee, C. S. G., Neural systems: a neural-fuzzy synergism to intelligent systems, 1996 (Prenctice-Hall).
9 Leu, Y. G., Lee, T. T., and Wang, W. Y., "On-line tuning of fuzzy-neural networks for adaptive control of nonlinear dynamic systems," IEEE Trans. System Man Cybernetics., Vol. 27(6), pp. 1034-1043, 1997.   DOI   ScienceOn
10 Lin, F. J., Hwang, W. J., and Wai, R. J., "A supervisory fuzzy neural network control system for tracking periodic inputs," IEEE Trans. Fuzzy System, Vol. 7(1), pp. 41-52, 1997.
11 Alvarez, L., Yi, J. G., Horowitz, R., and Olmos, L., "Dynamic friction model-based tire-road friction estimation and emergency braking control," J. Dynamic System Measurement, Control, Vol. 127(3), pp. 22-32, 2005.   DOI
12 Ha, Q. P., Bonchis, A., Rye, D. C., and Durrent-Whyte, H. F., "Variable structure systems approach to friction estimation and compensation," In Proceedings of the IEEE International Conference on Robotics and automation, , vol. 4, pp. 3543-3548, 2000.
13 Canudas de Wit, C. and Lischinsky, P., "Adaptive friction compensation with partially known dynamic friction model," Int. J. Adapt. Control Signal Process., Vol. 11, pp. 65-80, 1997.   DOI   ScienceOn
14 Lischinsky, P., Canudas de Wit, C., and Morel, G., "Friction compensation for an industrial hydraulic robot," Control Sys. Magazine IEEE, Vol. 19(1), pp. 25–32, 1999.   DOI   ScienceOn
15 Ge, S. S., Lee, T. H., and Ren, S. X., "Adaptive friction compensation of servo mechanisms," Int. J. Syst. Sci., Vol. 32(4), pp. 523-532, 2001.   DOI
16 Tan, Y., Chang, J., and Tan, T., "Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties," IEEE Trans. Ind. Electron., Vol. 50(5), pp. 944-952, 2003.   DOI   ScienceOn
17 Li, L., Wang, F. Y., and Zhou, Q. Z., "Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control," IEEE Trans. Intell. Transp. Syst., Vol. 7(1), pp. 1-17, 2006.   DOI   ScienceOn
18 Dupong, P., Hayward, V., Armstrong, B., and Altpeter, J., "Single state elasto-plastic friction models," IEEE Trans. Autom. Control, Vol. 47(5), pp. 787-792, 2002.   DOI   ScienceOn
19 Dahl, P., "Solid friction damping of mechanical vibrations," AIAA J., Vol 12, pp. 1675-1682, 1976.
20 Canudas de Wit, C., Olsson, H., and Astrom, K. J., "A new model for control of systems with friction," IEEE Trans. Autom. Control, Vol. 40(3), pp. 419-425, 1995.   DOI   ScienceOn
21 Swevers, J., Al-Bender, F., Ganseman, C., and Prajogo, T., "An integrated friction model structure with improved presliding behavior for accurate friction structure," IEEE Trans. Automatic Control, Vol. 45(4), pp. 675-686, 2000.   DOI   ScienceOn
22 Al-Bender, F., Lampaert, V., and Swever, J., "The generalized Maxwell-slip model: a novel model for friction simulation and compensation," IEEE Trans. Autom. Control, Vol. 50(11), pp. 1883-1887, 2005.   DOI
23 Choi, J. J., Han, S. I., and Kim, J. S., "Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding mode controller," Mechatonics, Vol. 16, pp. 87-104, 2006.