• Title/Summary/Keyword: Dual Arms

Search Result 49, Processing Time 0.018 seconds

Optimal Trajectory Planning for Cooperative Control of Dual-arm Robot (양팔 로봇의 협조제어를 위한 최적 경로 설계)

  • Park, Chi-Sung;Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.891-897
    • /
    • 2010
  • This paper proposes a cooperative control algorithm for a dual-arms robot which is carrying an object to the desired location. When the dual-arms robot is carrying an object from the start to the goal point, the optimal path in terms of safety, energy, and time needs to be selected among the numerous possible paths. In order to quantify the carrying efficiency of dual-arms, DAMM (Dual Arm Manipulability Measure) has been defined and applied for the decision of the optimal path. The DAMM is defined as the intersection of the manipulability ellipsoids of the dual-arms, while the manipulability measure indicates a relationship between the joint velocity and the Cartesian velocity for each arm. The cost function for achieving the optimal path is defined as the summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-arm robot with distributed controllers for synchronization control has been developed and used for the experiments.

A compliant control method for cooperating two arms with asymetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 컴플라이언스 제어방법)

  • 여희주;서일홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.40-50
    • /
    • 1996
  • An unified compliant control algorithm to regulate the force by dual arms is proposed, where tow arms are treated as one arm in a kinematic viewpoint. The force error calculated form the information of two force/torque sensors attached to the end of each arm is transferred to minimum actuator coordinates, and then is distributed to total system actuator coordinates. The position adjustment at the total actuator coordinates is computed based on the effective computed based on the effective compliance matrix with respect to total actuator coordinates, which is obtained by coordinate transformation between the task coordinates and the total actuator coordinates. An experiment is carried out for dual arms with asymmetric kinematic structure to control an interaction force between manipulators and the environment. The performances of the proposed control algorithm are experimentally compared to those of dual arms employing master/slave scheme. The proposed compliant control algorithm not only ouperforms other algorithms, but also can be treated as an unified approach n the sense that it can be applied to arbitrary dual arm systems with general kinematic structures.

  • PDF

A study on the hybrid position/force control of two cooperating arms with asymmetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 하이브리드 위치/힘 제어에 관한 연구)

  • 여희주;서일홍;홍석규;김창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.743-746
    • /
    • 1996
  • A hybrid control scheme to regulate the force and position by dual arms is proposed, where two arms are treated as one arm in a kinematic viewpoint. Our approach is different from other hybrid control approaches which consider robot dynamics, in the sense that we employ a purely kinematic based approach for hybrid control, with regard to the nature of position-controlled industrial robots. The proposed scheme is applied to sawing task. In the sawing task, the trajectory of the saw grasped by dual arms is planned in an offline fashion. When the trajectory of the saw is planned to follow a line in a horizontal plane, 3 position parameters are to be controlled(i.e, two translational positions and one rotational position). And a certain level of contact force has to be controlled along the vertical direction(i.e., minus z-direction) not to loose the contact with the object to be sawn. Typical feature of sawing task is that the contact position where the force control is to be performed is continuously changing. Therefore, the kinematic mapping between the force controlled position and the joint actuators has to be updated continuously. The effectiveness of the proposed control scheme is experimentally demonstrated. The proposed hybrid control scheme can be applied to arbitrary dual arm systems, regardless of their kinematic structure and the number of actuated joints.

  • PDF

Tele-Operation of Dual Arm Robot Using 3-D vision

  • Shibagami, Genjirou;Itoh, Akihiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.386-390
    • /
    • 1998
  • A master-slave system is proposed as a teaching device for a dual arm robot. The slave robots are remotely controlled by two delta-type master arms. In order to help the operator to observe the target object from the desired position and desired direction, cameras are mounted on a specialized manipulator, Movements of two slave arms are coordinated with that of the cameras. Due to this coordinated movements, the operator needs not to care the geometrical relation between the cameras and the slave robots.

  • PDF

Development of S/W Framework for the Industrial Dual-arm Robot (산업용 양팔로봇 제어 S/W 프레임 개발)

  • Choi, Taeyong;Do, Hyun Min;Park, Dong Il;Park, Chanhun;Kim, Doohyung;Park, Kyung-Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.887-891
    • /
    • 2013
  • Human rights at poor working condition is the severe problem in modern manufacturing system. The industrial dual-arm robot is being developed to meet these social issues fundamentally. The dual-arm robot can work instead of human workers. We developed the new dual-arm robot for manufacturing mobile phone and TV. It has advantages such as the solo controller for both arms, the human sized body and arms. The software platform for the industrial dual-arm robot is being developed which has strength in its convenience and intelligence compared to conventional the robot software platforms. Here the development of the dual-arm robot software platform is introduced.

Hierarchical Model-based Real-Time Collision-Free Trajectory Control for a Cual Arm Rrobot System (계층적 모델링에 의한 두 팔 로봇의 상호충돌방지 실시간 경로제어)

  • Lee, Ji-Hong;Won, Kyoung-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.461-468
    • /
    • 1997
  • A real-time collision-free trajectory control method for dual arm robot system is proposed. The proposed method is composed of two stages; one is to calculate the minimum distance between two robot arms and the other is to control the trajectories of the robots to ensure collision-free motions. The calculation of minimum distance between two robots is, also, composed of two steps. To reduce the calculation time, we, first, apply a simple modeling technique to the robots arms and determine the interested part of the robot arms. Next, we apply more precise modeling techniques for the part to calculate the minimum distance. Simulation results show that the whole algorithm runs within 0.05 second using Pentium 100MHz PC.

  • PDF

Evaluation of Performance Index of Dual-arm manipulator for Multiple Shape Object Handling (Multiple Shape Object Handling을 위한 양팔로봇의 성능지수 평가)

  • Son, Joon-Bae;Chen, Hu;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.9-19
    • /
    • 2012
  • This paper proposes a performance index for the multiple shape object handling of dual arm manipulator to determine whether a robot is good or not. When the dual-arm manipulator grasps a fixed object and is posed, the dual-arm manipulator should procure a space to freely control the manipulator. As a performance evaluation parameter, each joint torque from current sensor signal is utilized. From the current information, torque and energy for each joint are estimated. In this paper an performance index for an unstructured object is defined by an energy-cost function, and stability analysis for each motion is derived by the maximum force to the object. The maximum force to the object is computed by the inertia of object and acceleration information of end-effector. The acceleration data are derived by the double derivation of each encoder signal. Manipulability measure which implies how efficiently the dual-arm manipulator can move with the grasped object, can be represented by the intersection of the two manipulability ellipsoids for the left and right arms. Effectiveness of the proposed algorithm has been verified through the practical simulations and real experiments.

Design of Attachments for Dual Arm of Disaster-Responding Special Function Machinery by TRIZ (트리즈를 이용한 재난대응 특수목적기계의 양팔용 작업장치 설계)

  • Cho, Jung San
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.29-35
    • /
    • 2018
  • This paper presents the design of attachments for dual arms of disaster responding heavy machine. The heavy machine handles a variety of tasks such as cutting, shredding, picking and moving in unstructured environment. Despite the need for rapid response, the heavy machine has difficulty in repeatedly replacing the attachment depending on the task. Thus, we propose a method to solve this physical and functional contradiction relation by using TRIZ separation principles. Above all, the existing equipment and the required working scenarios were surveyed and summarized in order to separate the attachments functionally for right-handed, left-handed and two-handed operation. Then, we proposed the design directions and conceptual design as following: multi function type attachment A, for precise operation and various operations; grab type attachment B, for grasping irregular objects and auxiliary device for both arms to handle bulky objects.

Control Methodology of Multiple Arms for IMS : Experimental Sawing Task by Nonidentical Cooperating Arms (IMS를 위한 로봇 군 제어방법 : 이종 협조 로봇의 톱질 작업)

  • Yeo, Hee-Joo;Suh, Il-Hong;Lee, Byung-Ju;Oh, Sang-Rok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.452-460
    • /
    • 1999
  • Sawing experiments using a two-arm system have been performed in this work. The two-arm system under consideration of two kinematically-nonidentical arms. A passive joint is inserted at the end-point of one robot in order to increase the mobility up to the motion degree required for sawing tasks. A hybrid control algorithm for control of the two-arm system is designed. We experimentally show that the performance of the velocity and force response are satisfactory, and that one additional passive joint not only prevents the system from unwanted yaw motion in the sawing task, but also allows an unwanted pitch motion to be notably reduced by an internal load control. To show the general applicability of the proposed algorithms, we perform experimentation under several different conditions for saw, such as three saw blades, two sawing speeds, and two vertical forces.

  • PDF

Printed Folded Antenna for Dual-Band WLAN Operations

  • Chae, Gyoo-Soo;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.124-127
    • /
    • 2004
  • A novel printed inverted-F antenna for dual-band WLAN is presented. The proposed design is based on the folded quarter-wave antennas, which have a conductor plate having two arms. An extremely thin prototype antenna is fabricated according to the simulation result. The obtained antenna can perform in IEEE802.11a, b(2.4~2.484 GHz and 5.15~5.35 GHz bands) and be adopted for laptop applications. All the measurements are performed in the actual test fixture.