• Title/Summary/Keyword: Drying temperature

Search Result 1,494, Processing Time 0.03 seconds

The effect of temperature and storage time on DNA integrity after freeze-drying sperm from individuals with normozoospermia

  • Farzaneh Mohammadzadeh Kazorgah;Azam Govahi;Ali Dadseresht;Fatemeh Nejat Pish Kenari;Marziyeh Ajdary;Rana Mehdizadeh;Roya Derakhshan;Mehdi Mehdizadeh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • Objective: This study evaluated the effects of temperature and storage time on the quality and DNA integrity of freeze-dried sperm from individuals with normozoospermia. Methods: Normal sperm samples from 15 men aged 24 to 40 years were studied. Each sample was divided into six groups: fresh, freezing (frozen in liquid nitrogen), freeze-dried then preserved at room temperature for 1 month (FD-1m-RT), freeze-dried then preserved at room temperature for 2 months (FD-2m-RT), freeze-dried then preserved at 4 ℃ for 1 month (FD-1m-4 ℃), and freeze-dried then preserved at 4 ℃ for 2 months (FD-2m-4 ℃). The morphology, progressive motility, vitality, and DNA integrity of the sperm were evaluated in all groups. Results: In all freeze-dried groups, sperm cells were immotile after rehydration. The freeze-dried groups also showed significantly less sperm vitality than the fresh and frozen groups. Significantly more morphological sperm abnormalities were found in the freeze-dried groups, but freeze-drying did not lead to a significantly higher DNA fragmentation index (DFI). The DFI was significantly higher in the FD-2m-RT group than in the other freeze-dried groups. Conclusion: The freeze-drying method preserved the integrity of sperm DNA. The temperature and duration of storage were also identified as factors that influenced the DFI. Accordingly, more research is needed on ways to improve sperm quality in the freeze-drying process.

Study on Press-drying of Italian Poplar Board and its Effect on Improvement of Wood Property (이태리포푸라재(材)의 건조성(乾燥性) 및 성질개선(性質改善)에 관(關)한 연구(硏究))

  • Jung, Hee Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.37 no.1
    • /
    • pp.17-30
    • /
    • 1978
  • Press drying was used on italian poplar (Populus euamericana) to find the profitable means of drying. This study was designed to investigate the process of platen drying considering core temperature, drying time, current moisture content, drying rate, shrinkage and recovery, and green volume specific gravity, equilibrium moisture content and dimensional stability of press dried material and air dried material, The drying tests were conducted using 1.5 centimeter thick material at platen temperature of $175^{\circ}C$. The results were summarized as follows. 1. Core temperature was divided into three stages of drying characterized by period initial heating, plateau temperature and rising core temperature. Plateau temperature was 114 to $119^{\circ}C$. 2. The following predicting equations of drying time(y) in different core temperatures were developed for initial thickness($x_1$), initial moisture content ($x_2$) and final moisture content ($x_3$) 3. The predicting equaltion of current moisture content(u) was log u=4.658-0.060t as funtion of drying time(t) and that of drying rate(r) was log r=-2.797-0.049t. Current moisture content and drying rate of air drying were shown in figure 2. 4. The predicting equation of shrinkage in thickness direction(y) was log y=1.933+0.038t as function of drying time(t), and that of expansion in width direction was $y=-0.692+0.043t-0.001t^2$. 5. Thickness shrinkage was increased more than proportional at to pressure increase. Width shrinkage and thickness recovery was greatest at 35psi. 6. Green volume specific gravity of press dried material was 25% greater than that of air dried material. But equilibrium moisture content of press dried material was less 24% than that of air dried material. Antishrinkage efficiency of press dried material were obtained 27.7%.

  • PDF

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Energy and Exergy Aanalyses of Drying of Eggplant Slices in a Cyclone Type Dryer

  • Akpinar E. Kavak
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.692-703
    • /
    • 2005
  • In this paper, the energy and exergy analyses of the drying process of thin layer of eggplant slices are investigated. Drying experiments were conducted at inlet temperatures of drying air of 55, 65 and $75^{\circ}C$ and at drying air velocities of 1 and $1.5\;ms^{-1}$ in a cyclone type dryer. Using the first law of thermodynamics, energy analysis was carried to estimate the ratios of energy utilization. However, exergy analysis was accomplished to determine type and magnitude of exergy losses during the drying process by applying the second law of thermodynamics. It was deduced that eggplant slices are sufficiently dried in the ranges between $55-75^{\circ}C$ of drying air temperature and at 1 and $1.5\;ms^{-1}$ of drying air velocity during 12000-21600 s despite the exergy losses of $0-0.739\;kJs^{-l}.

Three-Dimensional Analysis on Drying Process of a Cylindrical Thin Film Layer of Sludge under Uniform Heating (일정온도로 가열되는 원통 형상 슬러지 박막의 건조에 대한 3차원 해석)

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1326-1331
    • /
    • 2009
  • Drying process in the cylindrical thin film layer of sludge with the thickness less than a few millimeters has been investigated. Thin film drying is specially designed and used to dry the viscous materials like sewage sludge. The thin film layer of sludge is dried on the metallic cylindrical surface through which thermal energy is supplied to the layer during drying. The wall temperature is assumed to be constant during drying in the present study for the simplification. In order to solve the equations, the mass transfer rate on the drying surface should be determined. The mass flux of evaporated water vapor on the surface is estimated with the formulation given in the literature. The effect of some physical parameters on drying has been examined to figure out the drying characteristics of the sludge layer.

  • PDF

Efficient Utilization of Energy in Drying Process for Rewetted Red Pepper -Hot-air-convective and Infrared-radiant Drying- (건고추의 재건조 공정에서 에너지의 효율적 이용 -열풍 대류 및 적외선 복사 건조)

  • Koh, H.K.;Cho, Y.J.;Park, J.B.;Kim, Y.H.;Kang, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.262-271
    • /
    • 1989
  • Red pepper is one of the most important agricultural products in Korea. Generally, raw red pepper is dried after harvest and the dried red pepper is powdered. Washing process is necessary to produce clean powder before powdering process. This study, therefore, was performed to analyze the drying characteristics of the rewetted red pepper and the energy utility during hot-air-convective and infrared-radiant drying. Drying effectiveness, De, was defined for the analysis of energy utility in this study, and its value was determined according to the energy source. Infrared-radiant drying was more favorable than convective drying according to drying effectiveness. But the temperature variation was appeared between the radiant surface and opposite surface of red pepper in infrared-radiant drying.

  • PDF

A Study on the automation of external collector type solar-dehumidification drying of wood using a personal computer (개인용(個人用)컴퓨터를 이용(利用)한 외부집열판형(外部集熱板型) 제습태양열(除濕太陽熱) 목재건조(木材乾燥)의 자동화(自動化)에 관한 연구(硏究))

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.23-30
    • /
    • 1992
  • An experimental external external collector type, solar dehumidification dryer was retrofitted with a simple computer-based control system. Solar, solar-dehumidification, and air-drying of 3cm-thick douglas-fir were carried out to investigate the drying-conditions and characteristics of this system, and to analyze the energy efficiencies of each drying met hods in summer. The drying rate of solar-dehumidification was 12%/day, which was about 2 times and 3 times faster than that of solar-and air-drying, respectively. The amount of diurnal temperature fluctuation inside the solar-dryer was greatly reduced and the energy efficiency was enhanced from 25% to 60% by the dehumidifier.

  • PDF

Proper Harvesting Time and Drying Temperature for Improving the Alisma plantago Quality and Yield (택사 수량과 품질 향상을 위한 적정 수확시기와 건조 온도)

  • Hyun, Kyu-Hwan;Kwon, Byung-Sun;Lim, June-Taeg;Shin, Dong-Young;Shin, Jong-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.224-228
    • /
    • 2006
  • The characteristics associated with the Alisma plantago quality and the factors as the proper harvesting time and drying temperature of Alisma plantago were examined from 2004 to 2006 at Sunchon, Southern region. The Alisma plantago cultivars tested were Sunwol and Yongjun. The highest yields of root and good quality, color and luster were obtained when harvested 22 days after first frost date and dried with $35-40^{\circ}C$ of a weeks at the drying oven for Sunwol and Yongjin cultivars. Considering from our results, optimum harvesting time were most likely to be harvesting time of 22 days after first frost date and drying temperature of $35-40^{\circ}C$ of a weeks at the drying oven.

Effects of Drying Temperature on the Saponin and Free Sugar Contents of Platycodon grandiflorum Radix (건조 온도에 따른 도라지의 사포닌과 당 함량 변화)

  • Lee, Byung-Jin;Cho, Young-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.769-772
    • /
    • 2014
  • This study was conducted to provide basic information on the effects of drying temperatures (45, 65, and $85^{\circ}C$) on saponins and free sugar contents of a 5-year-old Platycodon grandiflorum Radix. Platycodin D levels decreased with increase in drying temperature (956, 334, and 197 mg% at 45, 65, and $85^{\circ}C$, respectively). Polygalacin D levels were the highest at $45^{\circ}C$ (577 mg%), while platycodin $D_3$ and deapioplatycodin D were high at $65^{\circ}C$ (304 and 272 mg%, respectively). Sucrose levels were 3,825 mg% at $85^{\circ}C$ and 1,226 mg% at $45^{\circ}C$, and decreased when the drying temperature was decreased. The sucrose content showed significant negative correlation with saponin levels in dried P. grandiflorum ($-0.987^{**}$, p<0.01). These results suggested that drying P. grandiflorum at low temperatures is more economically viable.

Energy Performance Analysis of Electric Heater and Heat Pump Food Dryers (전기히터식 및 히트펌프식 식품 건조기의 에너지 성능 비교)

  • Yu, Young Woo;Kim, Young Il;Park, Seungtae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, energy performance of two types of food dryers which are electric heater and heat pump is studied experimentally. With drying chamber temperatures controlled at 45, 50 and $55^{\circ}C$, sliced radish is dried from an initial mass of 90 to final 7 kg. Moisture content, drying time, total power consumption, MER (moisture extraction rate, kg/h) and SMER (specific moisture extraction rate, kg/kWh) are measured and analyzed. As the drying chamber temperature is increased, drying time is shortened but energy efficiency is reduced for both types. For an electric heater dryer, the effect of chamber temperature on drying time is significant but less significant on energy efficiency. For a heat pump dryer, the dependence of chamber temperature on drying time is weak but strong on energy efficiency. Temperature levels have little effect on electric heater dryer performance but strong effect on heat pump dryer which operates on a vapor compression refrigeration cycle. The energy performance of the heat pump dryer is superior with an average SMER of 2.175 kg/kWh which is 2.22 times greater than that of the electric heater dryer with SMER of 1.224 kg/kWh.