• Title/Summary/Keyword: Drying temperature

Search Result 1,494, Processing Time 0.031 seconds

Effects of the Knife-Incising and Longitudinal Kerfing Treatment on High-Temperature Drying Characteristics of Red Pine Square Timber (배할 및 자상-인사이징 처리가 소나무 정각재의 고온건조 특성에 미치는 영향)

  • Lee, Chang-Jin;Lee, Nam-Ho;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.677-684
    • /
    • 2016
  • This study was carried out to confirm the effects of the knife-incising and longitudinal kerfing treatment on high-temperature drying characteristics of red pine square timber with dimensions of thickness 15 cm. The range of final moisture content was investigated 5.6% to 7.5% after drying. The differences did not exist in the moisture content and distribution according to the pretreatment condition. In the case of longitudinal kerfing treatment, the surface check occurrence was reduced than the control. In addition, the twist had a tendency to decrease due to the longitudinal kerfing treatment. The knife-incising and longitudinal kerfing treatment were investigated to be ineffective on internal checks and drying shrinkage.

Dehydration Kinetics of Rehmannia (Rehmannia glutinosa Liboschitz)

  • Rhim, Jong-Whan;Kim, Ji-Hye;Jeong, Won-Chul
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.771-777
    • /
    • 2007
  • Sliced and whole root of rehmannia were dehydrated in a laboratory dryer at 40, 60, 80, and $100^{\circ}C$ to evaluate the kinetic parameters for dehydration of rehmannia. The drying curves of both samples were characterized by a falling-rate drying period only. Sliced rehmannia dried 1.1 to 3.1 times faster than whole root of rehmannia depending on drying temperature. Equilibrium moisture content (EMC) of rehmannia samples at the drying temperature tested were 0.069-0.078 g water/g dry solid, which was coincided with the monolayer moisture content (0.06 and 0.07 g water/g dry solid) evaluated from desorption isotherms using GAB (Guggenheim-Anderson-de Boer) model. A logarithmic model for thin layer drying was applied to evaluate the drying time to reach EMC ($t_{EMC}$) and drying constant (k). The effect of temperature on $1/t_{EMC}$ and k was described by the Arrhenius model with activation energy values of 32.56 and 47.14 kJ/mol determined using the former parameter, and 34.27 and 38.26 kJ/mol determined using the latter parameter for sliced and whole root of rehmannia, respectively.

Physical drying and frying characteristics of kimbugaks made by a pasting & garnishing machine (풀칠·고명기로 제조된 김부각의 물리적 건조 및 튀김 특성)

  • Yoo, Soo-Nam;Choi, Yeong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.439-446
    • /
    • 2015
  • Kimbugak is one of Korea's traditional snacks made of laver. This study was conducted to investigate the physical drying and frying characteristics of kimbugaks made by a pasting & garnishing machine. The drying and frying characteristics should be analyzed to develop a continuous operation system for manufacturing kimbugak because kimbugak has a high moisture content after pasting process. Materials for pasting and garnishing on laver were rice gruel and sesame. The aluminum shelf with square hole was selected as a drying shelf. The recommended size of the square hole type was $1.5mm{\times}1.5mm$ because characteristics of deformation and easy separation from the shelf were excellent at the hole size. The drying time of 2 hours was also recommended with the drying temperature of $70^{\circ}C$ based on the test results such as dried condition (good), moisture conten t (3.7%), deformation (12.1 mm), and shrinkage rate (19.8%). As the frying conditions for dried kimbugaks, recommended oil temperature and frying time were $170^{\circ}C$, 15 seconds, respectively when corn oil was used. In the case of frying for undried kimbugaks, recommended oil temperature and frying time were $210^{\circ}C$, 2 - 3 minutes, respectively for improvement of work efficiency.

Drying characteristics of lotus root under microwave and hot-air combination drying

  • Joe, Sung Yong;So, Jun Hwi;Lee, Seung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.519-532
    • /
    • 2020
  • Because lotus root has a short shelf life, the quality easily deteriorates. Thus, the harvested lotus roots are processed into a variety of products. Drying is one of the simplest food preservation methods, which can increase food stability. However, the convective drying method takes a long time and requires high energy consumption. Combination drying methods have emerged to overcome the limitations of the convective drying method. This study investigated the drying characteristics of lotus root and determined the optimal drying model of lotus root depending on the microwave and hot-air combination drying conditions. The lotus root slices (5 mm in thickness and 40 mm in diameter) were dried by different drying conditions that were combined with three microwave power levels (50, 100, and 150 W) and two hot air temperatures (50 and 60℃) at a velocity of 5 m·s-1. Eight drying models were tested to evaluate the fit to the experimental drying data, and the effective moisture diffusion (Deff) values of the lotus root slices dried by combination drying were estimated. The combination drying time of the lotus root was significantly reduced with the high air temperature and microwave power. The effective moisture diffusion (Deff) of lotus root was more affected by the air temperature than microwave power intensity. Logarithmic model was most suitable to describe the drying curve of lotus root in the microwave-hot air combination drying method.

Development of the Dryer with a Heat Source of Carbon Nanofibers (탄소나노섬유를 열원으로 적용한 세탁물 건조기의 개발)

  • Lee, Jung-Hwan;Won, Sang-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.3
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a heating source of carbon nanofibers for the efficiency and the drying performance of laundry dryer, and focuses on the applicability-evaluation of its source. To design the proposed heating module, experiments were conducted in terms of surface temperature and surface temperature distribution characteristics of carbon nanofiber lamps. The surface temperature of the lamps increased linearly with increment of a current to flow a lamp and revealing the increasing pattern as the length of the ramps is shorter. The proposed heating source was evaluated based on drying efficiency, moisture evaporation rate at laundry, and internal temperature of a drum during drying process. The drying efficiency satisfied a 45% which is specified in KS C 9319. The moisture evaporation rate and the internal temperature of the drum were respectively 98.88% and $61.1^{\circ}C$, which are similar to that of S's company dryer. From the evaluation and actual drying test results, the proposed carbon nanofiber lamp heating module is considered to be applicable as a heat source for laundry dryer in terms of drying efficiency and drying performance. it is possible to obtain a heat source at a high temperature, an excellent calorific value, an improvement in drying performance, and an effect of sterilizing laundry due to the emission of far-infrared rays. In addition to the applicability, the difference of the drying efficiency between the dryers was analyzed in detail based on the power consumption of the heat sources.

Drying Rate and Physicochemical Characteristics of Dried Ginseng Root at Different Temperature (열풍건조온도에 따른 수삼건조속도 및 건조수삼의 이화학적 특성)

  • 하대철;이종원;도재호;박채규;류기형
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.741-746
    • /
    • 2004
  • Drying of raw ginseng root down to 35% moisture content required for extrusion process. There were two kinds of pre-treatments of raw ginseng root which were chopping and whole-root ginseng before frying at 80, 100 and 12$0^{\circ}C$. Drying rate and physicochemical properties of dried ginseng were evaluated to determine optimum drying temperature for extrusion process. Drying time at 8$0^{\circ}C$ to decrease to 35% moisture was 6.5 hr and ginsenoside content in dried ginseng at 8$0^{\circ}C$ was lower than that of dried ginseng at 100 and 12$0^{\circ}C$. Drying time at 100 and 12$0^{\circ}C$ to decrease to 35% moisture was 5.5 and 3.5 hr and redness of dried ginseng powder was 5.20 and 7.23 respectively. Browness and redness of dried ginseng extract from 75% ethylene were significantly increased with the increase in drying temperature. Ginsenosides Rb1, Rb2, Rc, Rd, Rg1 and total saponin were also increased with the increase in drying temperature from 8$0^{\circ}C$ to 10$0^{\circ}C$, however, those were not significantly different with drying temperature at 100 and 12$0^{\circ}C$. Drying temperature for extrusion process can be optimal at 10$0^{\circ}C$.

Studies on the Drying Methods of Sea Foods 1 . Fixed Bed Drying of Squid (수산식품의 건조방법에 관한 연구 1 . 오정어의 고정층건조)

  • HUR Jong-Wha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.107-110
    • /
    • 1982
  • Fixed bed drying method was selected to reduce the initial drying time of squid and the effects of drying air temperature and bed height on the drying rate were investigated, with following results. 1. The drying rate in the fixed bed dryer was faster than that of natural convection type dryer heated indirectly and that of hot air dryer heated directly. 2, Shirai-equation was applicable to squid being dried. Using the equation, drying rate constant obtained was as shown in table 1.

  • PDF

Secondary Drying Effects on Garlic Quality after Low Temperature Storage (마늘의 저온저장 후 2차 건조가 품질에 미치는 영향)

  • Ning, Xiao Feng;Kang, Tae Hwan;Park, Jong Won;Han, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1452-1460
    • /
    • 2013
  • The purpose of this study was to investigate secondary drying effects on garlic quality, and to define the optimal secondary drying conditions for garlic preservation. The secondary drying tests used garlic that was naturally dried once and stored at low temperature. After secondary drying, the garlic was stored in a warehouse at room temperature. Tests were performed at different low-temperature storage periods (60, 105, 150, 195, and 240 days), secondary drying temperatures (35 and $40^{\circ}C$), drying times (1, 2, 3 days), and room temperature storage periods (15, 30, and 45 days). The results were compared with a non-secondary drying condition control. In general, the $40^{\circ}C$-2 days dry conditions showed the lowest weight-loss rate (5%) and rotting rate during room temperature storage. The sprouting rate increased by 20% during the initial 15 day-room temperature storage, along with a small increase after 30 days of room temperature storage. Increases in drying temperature and the period of secondary drying conditions caused a decrease in firmness. In addition, the sprouting rate was 10% higher, and rotting rate 5~10% higher, for the non-drying condition, compared to drying conditions. Based on our results, the $40^{\circ}C$-2 days drying condition is the optimal secondary drying condition for garlic storage.

The Drying of Plasticized Pasta (가소화(可塑化)된 파스타의 건조(乾燥))

  • Schwartzberg, Henry G.;Kim, Kong-Hwan
    • Applied Biological Chemistry
    • /
    • v.24 no.1
    • /
    • pp.29-39
    • /
    • 1981
  • Cooked spaghetti soaked in 10%, 20%, and 40% aqueous glycerine solutions for ten minutes absorbed sufficient glycerine to plasticize that spaghetti during and after subsequent drying. The plasticizing action of the glycerine prevented fissuring(checking) and surface corrugation of the spaghetti at elevated drying temperature and large wet-bulb dry-bulb temperature difference. The drying temperature and the wet-bulb dry-bulb differences up to which such protection was provided as the glycerine soak concentration increased. Despite the reduction in drying rate, the drying time required to produce spaghetti with a water activity of 0.65 (the level normally required for stability) decreased as glycerine content increased. At high frying temperatures glycerine addition increased the extent of browning and shortened the period required to induce detectale browning, but in all instances browning started well after the product $a_w$ reached the 0.65 value required for the completion of drying. Because glycerine addition reduced drying times at any given set of drying conditions and permitted the use of higher drying temperatures, relatively low levels of glycerine addition (e.g. 0.15 kg glycerine/kg dry spagetti) can shorten spagnetti drying times by roughly 80% and perhaps by as much as 93%.

  • PDF

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Properties of Aggregate (잔골재 특성에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park Do-Kyong;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.1 s.19
    • /
    • pp.73-77
    • /
    • 2006
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidify. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. As a result Strain Rate of Drying Shrinkage of concrete was measured to increase by average $10{\times}10^{-5}$ in proportion to additional 4% increase in fine aggregate ratio, when water/cement ratio constant. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. 6. Strain Rate of Drying Shrinkage in sea sand concrete increased $10%{\sim}15%$ higher than measured when in river sand. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as fellows. The coefficient of correlation of Drying Shrinkage in concrete was over 90%.