• Title/Summary/Keyword: Dry mass production

Search Result 187, Processing Time 0.025 seconds

Effects of Cadmium on Radial Growth and Dry Mass Production of Ectomycorrhizal Fungi

  • Kim, Chang-Gi;Power, Sally Anne;Bell, John Nigel Berridge
    • The Korean Journal of Ecology
    • /
    • v.27 no.5
    • /
    • pp.301-306
    • /
    • 2004
  • The sensitivity to Cd of three ectomycorrhizal fungi, Paxillus involutus, Suillus bovinus and Rhizopogon subcaerulescens, was assessed and compared in terms of radial growth and dry mass production, using both agar and liquid culture. The radial growth of S. bovinus and R. subcaerulescens was significantly reduced at the lowest concentration (0.1mg Cd/L). The 50% effective concentration (EC$_{50}$) values calculated from radial growth rates of the ectomycorrhizal fungi showed that the sensitivity of the fungi to Cd was greatest in S. bovinus and lowest in R. subcaerulescens. Cadmium addition also significantly decreased dry mass production of the ectomycorrhizal fungi. The sensitivity of the fungi to Cd in terms of dry mass production, was greatest in S. bovinus and lowest in P. involutus. Higher growth rates of P. involutus and melanisation of R. subcaerulescens appeared to contribute to reduced Cd toxicity.

Optimization of Medium and Fermentation Conditions for Mass Production of Bacillus licheniformis SCD121067 by Statistical Experimental Design (Bacillus licheniformis SCD121067 균체 생산성 증가를 위한 통계적 생산배지 및 발효조건 최적화)

  • Jeong, Yoo-Min;Lee, Ju-Hee;Chung, Hea-Jong;Chun, Gie-Taek;Yun, Soon-Il;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.539-546
    • /
    • 2010
  • In this work, mass production of Bacillus licheniformis SCD121067 through medium optimization by statistical experimental method was studied. First, galactose, yeast extract and potassium phosphate dibasic were selected as carbon, nitrogen and phosphate sources for mass production of B. licheniformis SCD121067 by using one factor at a time method. Second, according to the result of Plackett-Burman experimental design, key factors was yeast extract and $K_2HPO$. Finally, the response surface methodology was performed to obtain the optimum concentrations of two selected variables. The optimized medium composition consisted of 20 g/L galactose, 36 g/L yeast extract, 0.41 g/L $K_2HPO4$, 0.25 g/L $Na_2CO_3$, 0.4g/L $MgSO_4$ and 0.01g/L $CaCl_2$. Dry cell weight (15.4 g/L) by optimum production medium were increased 10 times, as compared to that determined with basic production medium (1.5 g/L). Fermentation conditions were examined for the mass production of B. licheniformis. The effect of temperature, agitation speed, pH and aeration rate on the mass production of B. licheniformis were also studied in a batch fermenter which was carried out in a 2.5 L bioreactor with a working volume of 1.5 L containing optimized production medium. As a result, dry cell weight of batch culture was 30.7 g/L at $42^{\circ}C$, 300 rpm, pH 8.0 and 2 vvm.

Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression (3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석)

  • 이근식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

Effects of the High Pressure Sodium Lamp Lighting on the Dynamics of Growth and Dry Mass Partitioning in Sweet Pepper Plant (고압나트륨등 조사가 파프리카의 동적 생장과 건물분배율에 미치는 영향)

  • Kim, Eun Jeong;Lee, Sang Hyun;Lee, Jeong Hyun
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.565-572
    • /
    • 2013
  • The objective of this study was to describe and analyze the effect of high pressure sodium lamp lighting (HPS) on dynamics of growth and dry matter partitioning, and light use efficiency of sweet pepper crop grown over winter season. Young sweet pepper seedlings were planted at 3.75 plants per $m^2$ on September 29, 2010 and treated with HPS for 16 hours from December 14, 2010 until March 18, 2011. The number of leaves per plant were significantly increased with HPS, whereas the number of internodes and leaf area were less affected. HPS reduced the plant height with higher number of fruits per stem compared to those of without HPS lighting (CON). There were large differences in total dry mass production, stem and fruit dry mass between HPS and CON and those with HPS increased by 67.8%, 28.5%, and 97.1% compared to CON, respectively. Each organs of dry mass partitioning was calculated by leaf, stem or fruit growth rate divided by total plant growth rate. Dynamics of dry mass partitioning to leaf and stem between HPC and CON was measured in range of 45-47% at beginning of growth phase and drastically decreased after starting fruit growth in both treatments. Dry matter partitioning to vegetative organs was 4% higher compared to the plant grown under HPS lighting. Averaged dry matter partitioning to fruit with HPS, however, was largely increased by 14.2% compared to CON. Dynamics of the plant growth were well described by expolinear growth equation with three parameters of maximum relative growth rate, absolute growth rate and lost time to reach linear phase. The maximum growth rate of leaf, stem and fruit with HPS was increased by 18.6%, 74.7%, and 143.5% compared to CON. There was a linear relationship between intercepted light integral and vegetative organs (leaf and stem), fruit or total dry mass production. Light use efficiency (LUE, $g{\cdot}MJ^{-1}$) of total dry mass was $4.90g{\cdot}MJ^{-1}$ for HPS and $3.84g{\cdot}MJ^{-1}$ for CON, LUE of vegetative organs was $1.56g{\cdot}MJ^{-1}$ for HPS and $1.61g{\cdot}MJ^{-1}$ for CON and LUE of fruit dry mass was $3.34g{\cdot}MJ^{-1}$ for HPS and $2.23g{\cdot}MJ^{-1}$ for CON. The difference in LUE of total dry mass between treatments, therefore, occurred mainly from the different in LUE of fruit dry mass.

Effect of Aeration-Agitation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.224-228
    • /
    • 2008
  • With the aim of increasing the $CoQ_{10}$ production in mass culture, the effect of aeration-agitation on the $CoQ_{10}$ production using Rhodobactor sphaeroides was investigated in a l-L bioreactor. The maximum $CoQ_{10}$ production was 1.69 mg/g of dry cell weight under conditions of 50 Lux, $30^{\circ}C$, 300 rpm, and 5-vvm aeration. The $CoQ_{10}$ production was improved to produce 2.91 mg/g of dry cell weight under reduced conditions of agitation speed (200 rpm) and aeration rate (0.2 vvm). When R. sphaeroides was cultivated under more reduced DO levels during the exponential phase of the cell, the $CoQ_{10}$ production yield of 3.88-mg/g dry cell weight was the maximum obtained. Therefore, poorer conditions of aeration-agitation resulted in higher production of $CoQ_{10}$, and thus DO content was a crucial factor in the production of $CoQ_{10}$. Accordingly, it was necessary to control the DO concentration in order to enhance the $CoQ_{10}$ biosynthesis within a large-scale production.

Effects of pH and Light Irradiation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Dao, Van Thingoc;Kien, Ngyuen;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.219-223
    • /
    • 2008
  • To increase the level of $CoQ_{10}$ production in mass culture, the effects of pH and light irradiation on $CoQ_{10}$ production by Rhodobacter sphaeroides were investigated in a 1-L bioreactor. $CoQ_{10}$ production was growth-associated, and the highest production of $CoQ_{10}$ (1.69 mg/g dry cell) was obtained under uncontrolled pH: this production was 1.7 times higher than that obtained at controlled pH 7. Therefore, pH was a key factor affecting $CoQ_{10}$ production. The effect of light irradiation on $CoQ_{10}$ production was negligible. This result offers an advantage for mass production of $CoQ_{10}$.

Use of Sucrose-Agar Globule with Root Exudates for Mass Production of Vesicular Arbuscular Mycorrhizal Fungi

  • Thangaswamy Selvaraj;Kim, Hoon
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.60-63
    • /
    • 2004
  • A sucrose-agar globule (SAG) was newly introduced to increase production of the vesicular arbuscular mycorrhizal (VAM) fungal spores, Gigaspora gigantea and Glomus fasciculatum. An SAG inoculum and a sucrose-agar globule with root exudates (SAGE) inoculum were prepared, and their spore productions were compared with a soil inoculum. When the SAGE was used as the inoculum on sucrose-agar medium plates the number of spores was increased (35% more than the soil inoculum). After the soil inoculum and SAGE were inoculated on an experimental plant, Zingiber officinale, the percentage root colonization, number of VAM spores, and dry matter content were analyzed. It was observed that the SAGE showed a higher percentage of root colonization (about 10% more), and increases in the number of spores (about 26%) and dry matter (more than 13%) for the two VAM fungal spores than the soil inoculum. The results of this study suggested that the SAGE inoculum may be useful for the mass production of VAM fungi and also for the large scale production of VAM fungal fertilizer.

Growth Responses at Different Growth Stage of Pinus densiflora Seedlings to Enhanced Uv-B Radiation (자외선-B 증가에 따른 소나무 유묘의 생장 단계별 생장 반응)

  • 김종진
    • Journal of Korea Foresty Energy
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • This study was carried out to investigate the growth responses of Pinus densiflora seedlings to enhanced UV-B environment for 16 weeks in the field condition. The seedlings were treated with one of three levels of UV-B dosages - ambient UV-B, ambient + 3.2, and ambient + 5.2 KJ m$^{-2}$day$^{-1}$ and the irradiation was performed at the stage before the germination, the fully expanded cotyledon, and the primary needles grown more than 0.8cm in length of the seedlings, respectively. Enhanced UV-B irradiation reduced the height and the root collar diameter growth, and dry mass production of the seedling, and T/R ratio was increased by the UV-B treatment. Difference in seedling growth was observed by difference in time of the UV-B treatment. Among the seedlings which were treated with ambient - 3.2 KJ m$^{-2}$day$^{-1}$, height and root collar diameter growth was relatively high in the seedling received the UV-B treatment at the stage before the germination. The lowest dry mass production was observed in the seedlings received the UV-B at stage of cotyledon both in two levels of enhanced UV-B treatment. Chlorophyll concentration was reduced by enhanced UV-B irradiation, and chlorophyll a/b ratio was increased by the UV-B treatment.

  • PDF

High Cell Density Cultivation of Pseudomonas oleovorans for the Production of Poly(3-Hydroxyalkanoates)

  • Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.51-53
    • /
    • 1996
  • Fed-batch culture of Pseudomonas oleovorans was carried out for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using octanoate as a carbon source. Octanoate and the salt solution containing ammounium sulfate and magnesium sulfate were intermittently fed in the course of fermentation. Cell mass and PHA concentrations of 42.8 and 16.8g/L, respectively, could be obtained in 40 h. The PHA content and the PHA productivity were 39.2% and 0.42 g PHA/L-h, respectively. The yields of cell mass and PHA were 0.71 g dry cell mass/g octanoate and 0.28g PHA/g octanoate, respectively. Therefore, octanoate can be used for the production of MCL-PHAs to a high concentration with high productivity.

  • PDF

Mass-production of WS$_2$ Solid Lubricant and Its applications (WS$_2$ 고체윤활제의 양산 및 적용)

  • 신동우;최인혁;윤대현;김경도
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.221-226
    • /
    • 1998
  • The processing conditions for the mass production of platelet WS$_2$ lubricant powder were optimized. The mixture of tungsten and sulfur powders was sealed in a vacuum of 10$^{-3}$ torr and heat-treated at 850$\circ$C for 2 h. The internal pressure of reaction chamber was maintained at certain level by controlling the release valve automatically. The reaction product was the platelet WS$_2$ powder with an average size of 15 $\mu$m. The synthesized WS$_2$ powder was then coated on the wiper-blade of automobiles and the commercial deep-grooved ball bearing using wet and dry coating methods, respectively. High lubricity and wear resistance of wet coated wiper-blade were confirmed by the life test of 70,000 cycles. The life-time of the ball bearing assembled after WS$_2$ coating onto each part increased 50 times compared to the non-coated ball bearing.

  • PDF