DOI QR코드

DOI QR Code

Effects of Cadmium on Radial Growth and Dry Mass Production of Ectomycorrhizal Fungi

  • Kim, Chang-Gi (Institute of Basic Science Research, Kangwon National University) ;
  • Power, Sally Anne (Department of Environmental Science and Technology, Imperial College London, Silwood Park Campus) ;
  • Bell, John Nigel Berridge (Department of Environmental Science and Technology, Imperial College London, Silwood Park Campus)
  • Published : 2004.10.01

Abstract

The sensitivity to Cd of three ectomycorrhizal fungi, Paxillus involutus, Suillus bovinus and Rhizopogon subcaerulescens, was assessed and compared in terms of radial growth and dry mass production, using both agar and liquid culture. The radial growth of S. bovinus and R. subcaerulescens was significantly reduced at the lowest concentration (0.1mg Cd/L). The 50% effective concentration (EC$_{50}$) values calculated from radial growth rates of the ectomycorrhizal fungi showed that the sensitivity of the fungi to Cd was greatest in S. bovinus and lowest in R. subcaerulescens. Cadmium addition also significantly decreased dry mass production of the ectomycorrhizal fungi. The sensitivity of the fungi to Cd in terms of dry mass production, was greatest in S. bovinus and lowest in P. involutus. Higher growth rates of P. involutus and melanisation of R. subcaerulescens appeared to contribute to reduced Cd toxicity.

Keywords

References

  1. Aggangan, N.S., B. Dell and N. Malajczuk. 1998. Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S.T. Blake. Geoderma 84: 15-27
  2. Blaudez, D., C. Jacob, K. Tumau, J.V. Colpaert, U. Ahonen-Jonnarth, R Finlay, B. Botton and M. Chalot. 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol. Res. 104: 1366-1371 https://doi.org/10.1017/S0953756200003166
  3. Brown, M.T. and I.R. Hall. 1990. Metal tolerance in fungi. In A.J. Shaw (ed.), Heavy Metal Tolerance in Plants. CRC Press, Boca Raton. pp. 95-104
  4. Colpaert, J.V. and J.A. Van Assche. 1987. Heavy metal tolerance in some ectomycorrhizal fungi. Funct. Ecol. 1: 415-421 https://doi.org/10.2307/2389799
  5. Colpaert, J.V. and J.A. Van Assche. 1992. The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil 145: 237-243 https://doi.org/10.1007/BF00010352
  6. Colpaert, J.V., P. Vandenkoomhuyse, K. Adriaensen and J. Vangronsveld. 2000. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol. 147: 367-379 https://doi.org/10.1046/j.1469-8137.2000.00694.x
  7. Darlington, A.B. and W.E. Rauser. 1988. Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutus: a new growth model accounts for changes in branching. Can. J. Bot. 66: 225-229 https://doi.org/10.1139/b88-038
  8. Duddridge, J.A., A. Malibari and D.J. Read. 1980. Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834-836 https://doi.org/10.1038/287834a0
  9. Finlay, D. 1989. Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris, Suillus grevillei and Boletinus cavipes. New Phytol. 103: 185-192 https://doi.org/10.1111/j.1469-8137.1986.tb00607.x
  10. Gruhn, C.M. and O.K. Miller, Jr. 1991. Effect of copper on tyrosinase activity and polyamine content of some ectomycorrhizal fungi. Mycol. Res. 95: 268-272 https://doi.org/10.1016/S0953-7562(09)81231-8
  11. Hartley, J., J.W.G. Caimey and A.A. Meharg. 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189: 303-319
  12. Hormilla, S., MK Dunabeitia, P. Cabrerizo, J.I. Pena and J.M. Becerril. 1996. Response of six ectomycorrhizal fungi on pure culture to some environmental stresses. In C. Azcon-Aguilar and lM. Barea (eds.), Mycorrhizas in Integrated Systems from Genes to Plant Development: Proceedings of the Fourth European Symposium on Mycorrhizas. European Commission Report, EU16728EN, pp. 448-45
  13. Jongbloed, R.H. and G.W.F.H. Borst-Pauwels. 1990. Differential response of some ectomycorrhizal fungi to cadmium in vitro. Acta Bot. Need. 39: 241-246
  14. Kim, C.-G., S.A. Power and J.N.B. Bell. 2003. Effects of cadmium on growth and glucose utilisation of ectomycorrhizal fungi in vitro. Mycorrhiza 13: 223-226 https://doi.org/10.1007/s00572-003-0235-8
  15. Kim, C.-G., S.A. Power and J.N.B. Bell. 2004. Response of Pinus sylvestris seedlings to cadmium and mycorrhizal colonisation. Water, Air, Soil Pollut. 155: 189-203 https://doi.org/10.1023/B:WATE.0000026527.34649.3c
  16. Kottke, I. and F. Oberwinkler. 1987. The cellular structure of the Hartig net: coenocytic and transfer cell-like organization. Nord. J. Bot. 7: 85-95 https://doi.org/10.1111/j.1756-1051.1987.tb00919.x
  17. Kowalski, S., W. Wojewoda, C. Bartnik and A. Rupik. 1990. Mycorrhizal species composition and infection patterns in forest plantations exposed to different levels of industrial pollution. Agr. Ecosyst. Environ. 28: 249-255 https://doi.org/10.1016/0167-8809(90)90048-I
  18. Marschner, P., G. Jentschke and D.L. Godbold. 1998. Cation exchange capacity and lead sorption in ectomycorrhizal fungi. Plant Soil 205: 93-98 https://doi.org/10.1023/A:1004376727051
  19. Marx, D.H. 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153-163
  20. McCreight, J.D. and D.B. Schroeder. 1982. Inhibition of growth of nine ectomycorrhizal fungi by cadmium, lead, and nickel in vitro. Environ. Exp. Bot. 22: 1-7 https://doi.org/10.1016/0098-8472(82)90002-8
  21. Molina, R. and J.M. Trappe. 1994. Biology of the ectomycorrhizal genus, Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol. 126: 653-675
  22. Palmer, J.G. and E. Hacskaylo. 1970. Ectomycorrhizal fungi in pure culture. I. Growth on single carbon sources. Physiol. Plant. 23: 1187-1197
  23. Paulus, W. and A. Bresinsky. 1989. Soil fungi and other microorganisms. In E.-D. Schulze, O.L. Lange and R. Oren (eds.), Forest Decline and Air Pollution: A Study of Spruce (Picea abies) on Acid Soils. Springer-Verlag, Berlin. pp. 110-120
  24. R$\ddot {u}$hling, $\AA$. and B. S$\ddot {o}$derstr$\ddot {o}$m. 1990. Changes in fruitbody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in north Sweden. Water, Air, Soil Pollut. 49: 375-387 https://doi.org/10.1007/BF00507077
  25. Smith, S.E. and D.J. Read. 1997. Mycorrhizal Symbiosis, 2nd ed. Academic Press, San Diego
  26. Terrnorshuizen, A. and A. Schaffers. 1991. The decline of carpophores of ectomycorrhizal fungi in stands of Pinus sylvestris L. in The Netherlands: possible causes. Nova Hedwigia 53: 267-289
  27. Villeneuve, N., M.M. Grandtner and J.A. Fortin. 1989. Frequency and diversity of ectomycorrhizal and saprophytic macrofungi in the Laurentide Mountains of Quebec. Can. J. Bot. 67: 2616-2629 https://doi.org/10.1139/b89-338
  28. Vodnik, D., A.R. Byrne and N. Gogala. 1998. The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol. Res. 102: 953-958 https://doi.org/10.1017/S0953756297005959
  29. Whipps, J.M. 1987. Method for estimation of chitin content of mycelium of ectomycorrhizal fungi grown on solid substrates. Trans. Brit. Mycol. Soc. 89: 199-203 https://doi.org/10.1016/S0007-1536(87)80153-5