Browse > Article
http://dx.doi.org/10.5141/JEFB.2004.27.5.301

Effects of Cadmium on Radial Growth and Dry Mass Production of Ectomycorrhizal Fungi  

Kim, Chang-Gi (Institute of Basic Science Research, Kangwon National University)
Power, Sally Anne (Department of Environmental Science and Technology, Imperial College London, Silwood Park Campus)
Bell, John Nigel Berridge (Department of Environmental Science and Technology, Imperial College London, Silwood Park Campus)
Publication Information
The Korean Journal of Ecology / v.27, no.5, 2004 , pp. 301-306 More about this Journal
Abstract
The sensitivity to Cd of three ectomycorrhizal fungi, Paxillus involutus, Suillus bovinus and Rhizopogon subcaerulescens, was assessed and compared in terms of radial growth and dry mass production, using both agar and liquid culture. The radial growth of S. bovinus and R. subcaerulescens was significantly reduced at the lowest concentration (0.1mg Cd/L). The 50% effective concentration (EC$_{50}$) values calculated from radial growth rates of the ectomycorrhizal fungi showed that the sensitivity of the fungi to Cd was greatest in S. bovinus and lowest in R. subcaerulescens. Cadmium addition also significantly decreased dry mass production of the ectomycorrhizal fungi. The sensitivity of the fungi to Cd in terms of dry mass production, was greatest in S. bovinus and lowest in P. involutus. Higher growth rates of P. involutus and melanisation of R. subcaerulescens appeared to contribute to reduced Cd toxicity.
Keywords
Cadmium toxicity; Dry mass production; Ectomycorrhizal fungi; Effective concentration; Radial growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aggangan, N.S., B. Dell and N. Malajczuk. 1998. Effects of chromium and nickel on growth of the ectomycorrhizal fungus Pisolithus and formation of ectomycorrhizas on Eucalyptus urophylla S.T. Blake. Geoderma 84: 15-27
2 Blaudez, D., C. Jacob, K. Tumau, J.V. Colpaert, U. Ahonen-Jonnarth, R Finlay, B. Botton and M. Chalot. 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol. Res. 104: 1366-1371   DOI   ScienceOn
3 Brown, M.T. and I.R. Hall. 1990. Metal tolerance in fungi. In A.J. Shaw (ed.), Heavy Metal Tolerance in Plants. CRC Press, Boca Raton. pp. 95-104
4 Colpaert, J.V. and J.A. Van Assche. 1987. Heavy metal tolerance in some ectomycorrhizal fungi. Funct. Ecol. 1: 415-421   DOI   ScienceOn
5 Colpaert, J.V. and J.A. Van Assche. 1992. The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil 145: 237-243   DOI
6 Finlay, D. 1989. Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris, Suillus grevillei and Boletinus cavipes. New Phytol. 103: 185-192   DOI   ScienceOn
7 Gruhn, C.M. and O.K. Miller, Jr. 1991. Effect of copper on tyrosinase activity and polyamine content of some ectomycorrhizal fungi. Mycol. Res. 95: 268-272   DOI
8 Hartley, J., J.W.G. Caimey and A.A. Meharg. 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189: 303-319
9 Hormilla, S., MK Dunabeitia, P. Cabrerizo, J.I. Pena and J.M. Becerril. 1996. Response of six ectomycorrhizal fungi on pure culture to some environmental stresses. In C. Azcon-Aguilar and lM. Barea (eds.), Mycorrhizas in Integrated Systems from Genes to Plant Development: Proceedings of the Fourth European Symposium on Mycorrhizas. European Commission Report, EU16728EN, pp. 448-45
10 Jongbloed, R.H. and G.W.F.H. Borst-Pauwels. 1990. Differential response of some ectomycorrhizal fungi to cadmium in vitro. Acta Bot. Need. 39: 241-246
11 Kim, C.-G., S.A. Power and J.N.B. Bell. 2003. Effects of cadmium on growth and glucose utilisation of ectomycorrhizal fungi in vitro. Mycorrhiza 13: 223-226   DOI   ScienceOn
12 R$\ddot {u}$hling, $\AA$. and B. S$\ddot {o}$derstr$\ddot {o}$m. 1990. Changes in fruitbody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in north Sweden. Water, Air, Soil Pollut. 49: 375-387   DOI
13 Molina, R. and J.M. Trappe. 1994. Biology of the ectomycorrhizal genus, Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol. 126: 653-675
14 Palmer, J.G. and E. Hacskaylo. 1970. Ectomycorrhizal fungi in pure culture. I. Growth on single carbon sources. Physiol. Plant. 23: 1187-1197
15 Paulus, W. and A. Bresinsky. 1989. Soil fungi and other microorganisms. In E.-D. Schulze, O.L. Lange and R. Oren (eds.), Forest Decline and Air Pollution: A Study of Spruce (Picea abies) on Acid Soils. Springer-Verlag, Berlin. pp. 110-120
16 Colpaert, J.V., P. Vandenkoomhuyse, K. Adriaensen and J. Vangronsveld. 2000. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol. 147: 367-379   DOI   ScienceOn
17 Darlington, A.B. and W.E. Rauser. 1988. Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutus: a new growth model accounts for changes in branching. Can. J. Bot. 66: 225-229   DOI
18 Duddridge, J.A., A. Malibari and D.J. Read. 1980. Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834-836   DOI
19 McCreight, J.D. and D.B. Schroeder. 1982. Inhibition of growth of nine ectomycorrhizal fungi by cadmium, lead, and nickel in vitro. Environ. Exp. Bot. 22: 1-7   DOI   ScienceOn
20 Marx, D.H. 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153-163
21 Kim, C.-G., S.A. Power and J.N.B. Bell. 2004. Response of Pinus sylvestris seedlings to cadmium and mycorrhizal colonisation. Water, Air, Soil Pollut. 155: 189-203   DOI   ScienceOn
22 Kottke, I. and F. Oberwinkler. 1987. The cellular structure of the Hartig net: coenocytic and transfer cell-like organization. Nord. J. Bot. 7: 85-95   DOI
23 Terrnorshuizen, A. and A. Schaffers. 1991. The decline of carpophores of ectomycorrhizal fungi in stands of Pinus sylvestris L. in The Netherlands: possible causes. Nova Hedwigia 53: 267-289
24 Kowalski, S., W. Wojewoda, C. Bartnik and A. Rupik. 1990. Mycorrhizal species composition and infection patterns in forest plantations exposed to different levels of industrial pollution. Agr. Ecosyst. Environ. 28: 249-255   DOI   ScienceOn
25 Marschner, P., G. Jentschke and D.L. Godbold. 1998. Cation exchange capacity and lead sorption in ectomycorrhizal fungi. Plant Soil 205: 93-98   DOI   ScienceOn
26 Smith, S.E. and D.J. Read. 1997. Mycorrhizal Symbiosis, 2nd ed. Academic Press, San Diego
27 Villeneuve, N., M.M. Grandtner and J.A. Fortin. 1989. Frequency and diversity of ectomycorrhizal and saprophytic macrofungi in the Laurentide Mountains of Quebec. Can. J. Bot. 67: 2616-2629   DOI
28 Whipps, J.M. 1987. Method for estimation of chitin content of mycelium of ectomycorrhizal fungi grown on solid substrates. Trans. Brit. Mycol. Soc. 89: 199-203   DOI
29 Vodnik, D., A.R. Byrne and N. Gogala. 1998. The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol. Res. 102: 953-958   DOI   ScienceOn