• Title/Summary/Keyword: Dry etch

Search Result 201, Processing Time 0.027 seconds

GaN Dry Etching Characteristics using a planar Inductively coupled plasma (평판형 유도 결합 플라즈마틀 이용한 GaN 건식 식각 특성)

  • Kim, Moon-Young;Kim, Tae-Hyun;Jang, Sang-Hun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.276-278
    • /
    • 1997
  • The reliable etching process is one of the essential steps in fabricating GaN based-device. High etch rate is needed to obtain a deeply etched structure and perfect anisotropic etched facet is needed to obtain lasing profile. In the research, therefore, we had proposed a planar inductively coupled plasma etcher (Planar ICP Etcher) as a high density plasma source, and studied the etching mechanism using the $CH_4/H_2$/Ar gas mixture. Dry etching characteristics such as etch rate, anisotropic etching profile and so on, for the III-V nitride layers were investigated using Planar ICP Etcher, based on the plasma characteristic as a variation of plasma process parameters.

  • PDF

Dry etching of ZnO thin film using a $CF_4$ mixed by Ar

  • Kim, Do-Young;Kim, Hyung-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1504-1507
    • /
    • 2009
  • In this paper, the etching behavior of ZnO in $CF_4$ plasma mixed Ar was investigated. Previously, the etch rate in $CF_4$/Ar plasma was reported that it is slower than that in Cl containing plasma. But, plasma included Cl atom can produce the by-product such as $ZnCl_2$. In order to solve this film contamination, no Cl containing etching gas is required. We controlled the etching parameter such as source power, substrate bias power, and $CF_4$/Ar gas ratio to acquire the fast etch rate using a ICP etcher. We accomplished the etching rate of 144.85 nm/min with the substrate bias power of 200W. As the energetic fluorine atoms were bonded with Zinc atoms, the fluoride zinc crystal ($ZnF_2$) was observed by X-ray photoelectron spectroscopy (XPS).

  • PDF

Enhanced Cathode-Luminescence in a InxGa1-xN/InyGa1-y Green Light Emitting Diode Structure Using Two-Dimensional Photonic Crystals

  • Choi, Eui-Sub;Lee, Jae-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.276-279
    • /
    • 2008
  • We report on the enhancement of cathode-luminescence in an $In_xGa_{1-x}N/In_yGa_{1-y}$ green light emitting diode structure using two-dimensional photonic crystals. The square lattice arrays of photonic crystals with diameter/periodicity of 200/500 nm were fabricated by electron beam lithography. Inductively coupled plasma dry etching was used to etch and define photonic crystals. Three samples with different etch depths, i.e., 170, 95, and 65 nm, were constructed. Field emission scanning electron microscope analysis shows that air holes of photonic crystal structure with inverted-cone shapes were fabricated after dry etching. Cathode-luminescence measurement indicated that up to 30-fold enhancement of cathode-luminescence intensity has been achieved.

A study on Silicon dry Etching for Solar Cell Fabrication Using Hollow Cathode Plasma System (태양전지 제작을 위한 Hollow Cathode Plasma System의 실리콘 건식식각에 관한 연구)

  • ;Suresh Kumar Dhungel
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.62-66
    • /
    • 2004
  • This paper investigated the characteristics of a newly developed high density hollow cathode plasma (HCP) system and its application for the etching of silicon wafers. We used SF$_{6}$ and $O_2$ gases in the HCP dry etch process. Silicon etch rate of $0.5\mu\textrm{m}$/min was achieved with $SF_6$$O_2$plasma conditions having a total gas pressure of 50mTorr, and RF power of 100 W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. The results of this experiment can be used for various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications.s.

Dry Etch Characteristics of TiN Thin Film for Metal Gate Electrode (Metal 게이트 전극을 위한 TiN 박막의 건식 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Park, Jung-Soo;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.169-172
    • /
    • 2009
  • We investigated the dry-etching mechanism of the TiN thin film using a $Cl_2$/Ar inductively coupled plasma system. To understand the effect of the $Cl_2$/Ar gas mixing ratio, we etched the TiN thin film by varying $Cl_2$/Ar gas mixing ratio. When the gas mixing ratio was 100% $Cl_2$, the highest etch rate was obtained. The chemical reaction on the surface was investigated with X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was used to examine etched profiles of the TiN thin film.

A Study on the Polysilicon Etch Residue by XPS and SEM (XPS와 SEM을 이용한 폴리실리콘 표면에 형성된 잔류막에 대한 연구)

  • 김태형;이종완;최상준;이창원
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.169-175
    • /
    • 1998
  • The plasma etching of polysilicon was performed with the HBr/$Cl_2/He-O_2$ gas mixture. The residual layers after photoresist strip were investigated using x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The etch residue was identified as silicon oxide deposited on the top of the patterned polysilicon. In order to clarify the formation mechanism of the etch residue, the effects of various gas mixtures such as $Cl_2/He-O_2$and HBr/$Cl_2$were investigated. We found that the etch residue is well formed in the presence of oxygen, suggesting that the etch residue is caused by the reaction of oxvgen and non-volatile silicon halide compounds. Wet cleaning and dry etch cleaning processes were applied to remove the polysilicon etch residue, which can affect the electrical characteristics and further device processes. XPS results show that the wet cleaning is suitable for the removal of the etch residue.

  • PDF

Analysis of Si Etch Uniformity of Very High Frequency Driven - Capacitively Coupled Ar/SF6 Plasmas (VHF-CCP 설비에서 Ar/SF6 플라즈마 분포가 Si 식각 균일도에 미치는 영향 분석)

  • Lim, Seongjae;Lee, Ingyu;Lee, Haneul;Son, Sung Hyun;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.72-77
    • /
    • 2021
  • The radial distribution of etch rate was analyzed using the ion energy flux model in VHF-CCP. In order to exclude the effects of polymer passivation and F radical depletion on the etching. The experiment was performed in Ar/SF6 plasma with an SF6 molar ratio of 80% of operating pressure 10 and 20 mTorr. The radial distribution of Ar/SF6 plasma was diagnosed with RF compensated Langmuir Probe(cLP) and Retarding Field Energy Analyzer(RFEA). The radial distribution of ion energy flux was calculated with Bohm current times the sheath voltage which is determined by the potential difference between the plasma space potential (measured by cLP) and the surface floating potential (by RFEA). To analyze the etch rate uniformity, Si coupon samples were etched under the same condition. The ion energy flux and the etch rate show a close correlation of more than 0.94 of R2 value. It means that the etch rate distribution is explained by the ion energy flux.

Dry Etching of $Al_2O_3$ Thin Film in Inductively Coupled Plasma

  • Xue, Yang;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.67-67
    • /
    • 2009
  • Due to the scaling down of the dielectrics thickness, the leakage currents arising from electron tunneling through the dielectrics has become the major technical barrier. Thus, much works has focused on the development of high k dielectrics in both cases of memories and CMOS fields. Among the high-k materials, $Al_2O_3$ considered as good candidate has been attracting much attentions, which own some good properties as high dielectric constant k value (~9), a high bandgap (~2eV) and elevated crystallization temperature, etc. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of BClxOy compound. In this study, the etch characteristic of ALD deposited $Al_2O_3$ thin film was investigated in $BCl_3/N_2$ plasma. The experiment were performed by comparing etch rates and selectivity of $Al_2O_3$ over $SiO_2$ as functions of the input plasma parameters such as gas mixing ratio, DC-bias voltage and RF power and process pressure. The maximum etch rate was obtained under 15 mTorr process perssure, 700 W RF power, $BCl_3$(6 sccm)/$N_2$(14 sccm) plasma, and the highest etch selectivity was 1.9. We used the x-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. The Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF