• Title/Summary/Keyword: Drought modeling

Search Result 63, Processing Time 0.026 seconds

3-D Dynamic groundwater-river interaction modeling incorporating climate variability and future water demand

  • Hong, Yoon-Seok Timothy;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.67-74
    • /
    • 2008
  • The regional-scale transient groundwater-river interaction model is developed to gain a better understanding of the regional-scale relationships and interactions between groundwater and river system and quantify the residual river flow after groundwater abstraction from the aquifers with climate variability in the Waimea Plains, New Zealand. The effect of groundwater abstraction and climate variability on river flows is evaluated by calculating river flows at the downstream area for three different drought years (a 1 in 10 drought year, 1 in 20 drought year, and 1 in 24 drought year) and an average year with metered water abstraction data. The effect of future water demand (50 year projection) on river flows is also evaluated. A significant increase in the occurrence of zero flow, or very low flow of 100 L/sec at the downstream area is predicted due to large groundwater abstraction increase with climate variability. Modeling results shows the necessity of establishing dynamic cutback scenarios of water usage to users over the period of drought conditions considering different climate variability from current allocation limit to reduce the occurrence of low flow conditions at the downstream area.

  • PDF

Estimating Climate Change Impact on Drought Occurrence Based on the Soil Moisture PDF (토양수분 확률밀도함수로 살펴본 가뭄발생에 대한 기후변화의 영향)

  • Choi, Dae-Gyu;Ahn, Jae-Hyun;Jo, Deok-Jun;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.709-720
    • /
    • 2010
  • This paper describes the modeling of climate change impact on drought using a conceptual soil moisture model and presents the results of the modeling approach. The future climate series is obtained by scaling the historical series, informed by CCCma CGCM3-T63 with A2 green house emission scenario, using a daily scaling method that considers changes in the future monthly precipitation and potential evapotranspiration as well as in the daily precipitation distribution. The majority of the modeling results indicate that there will be more frequent drought in Korea in the future.

Projection of Future Changes in Drought Characteristics in Korea Peninsula Using Effective Drought Index (유효가뭄지수(EDI)를 이용한 한반도 미래 가뭄 특성 전망)

  • Gwak, Yongseok;Cho, Jaepil;Jung, Imgook;Kim, Dowoo;Jang, Sangmin
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study implemented the prediction of drought properties (number of drought events, intensity, duration) using the user-oriented systematical procedures of downscaling climate change scenarios based the multiple global climate models (GCMs), AIMS (APCC Integrated Modeling Solution) program. The drought properties were defined and estimated with Effective Drought Index (EDI). The optimal 10 models among 29 GCMs were selected, by the estimation of the spatial and temporal reproducibility about the five climate change indices related with precipitation. In addition, Simple Quantile Mapping (SQM) as the downscaling technique is much better in describing the observed precipitation events than Spatial Disaggregation Quantile Delta Mapping (SDQDM). Even though the procedure was systematically applied, there are still limitations in describing the observed spatial precipitation properties well due to the offset of spatial variability in multi-model ensemble (MME) analysis. As a result, the farther into the future, the duration and the number of drought generation will be decreased, while the intensity of drought will be increased. Regionally, the drought at the central regions of the Korean Peninsula is expected to be mitigated, while that at the southern regions are expected to be severe.

Development of Hydroclimate Drought Index (HCDI) and Evaluation of Drought Prediction in South Korea (수문기상가뭄지수 (HCDI) 개발 및 가뭄 예측 효율성 평가)

  • Ryu, JaeHyun;Kim, JungJin;Lee, KyungDo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • The main objective of this research is to develop a hydroclimate drought index (HCDI) using the gridded climate data inputs in a Variable Infiltration Capacity (VIC) modeling platform. Typical drought indices, including, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Self-calibrated Palmer Drought Severity Index (SC-PDSI) in South Korea are also used and compared. Inverse Distance Weighting (IDW) method is applied to create the gridded climate data from 56 ground weather stations using topographic information between weather stations and the respective grid cell ($12km{\times}12km$). R statistical software packages are used to visualize HCDI in Google Earth. Skill score (SS) are computed to evaluate the drought predictability based on water information derived from the observed reservoir storage and the ground weather stations. The study indicates that the proposed HCDI with the gridded climate data input is promising in the sense that it can help us to predict potential drought extents and to mitigate its impacts in a changing climate. The longer term drought prediction (e.g., 9 and 12 month) capability, in particular, shows higher SS so that it can be used for climate-driven future droughts.

A development of Bayesian Copula model for a bivariate drought frequency analysis (이변량 가뭄빈도해석을 위한 Bayesian Copula 모델 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Cho, Young-Hyun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.745-758
    • /
    • 2017
  • The copula-based models have been successfully applied to hydrological modeling including drought frequency analysis and time series modeling. However, uncertainty estimation associated with the parameters of these model is not often properly addressed. In these context, the main purposes of this study are to develop the Bayesian inference scheme for bivariate copula functions. The main applications considered are two-fold: First, this study developed and tested an approach to copula model parameter estimation within a Bayesian framework for drought frequency analysis. The proposed modeling scheme was shown to correctly estimate model parameters and detect the underlying dependence structure of the assumed copula functions in the synthetic dataset. The model was then used to estimate the joint return period of the recent 2013~2015 drought events in the Han River watershed. The joint return period of the drought duration and drought severity was above 100 years for many of stations. The results obtained in the validation process showed that the proposed model could effectively reproduce the underlying distribution of observed extreme rainfalls as well as explicitly account for parameter uncertainty in the bivariate drought frequency analysis.

Development of Drought Forecasting Techniques Using Nonstationary Rainfall Simulation Method (비정상성 강우모의기법을 이용한 가뭄 예측기법 개발)

  • Kim, Tae-Jeong;Park, Jong-Hyeon;Jang, Seok-Hwan;Kwon, Hyun-Han
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.1-10
    • /
    • 2016
  • Drought is a slow-varying natural hazard that is characterized by various factors such that reliable drought forecasting along with uncertainties estimation has been a major issue. In this study, we proposed a stochastic simulation technique based scheme for providing a set of drought scenarios. More specifically, this study utilized a nonstationary Hidden markov model that allows us to include predictors such as climate state variables and global climate model's outputs. The simulated rainfall scenarios were then used to generate the well-known meteorological drought indices such as SPI, PDSI and PN for the three dam watersheds in South Korea. It was found that the proposed modeling scheme showed a capability of effectively reproducing key statistics of the observed rainfall. In addition, the simulated drought indices were generally well correlated with that of the observed.

Water quality forecasting on upstream of chungju lake by flow duration (충주호 상류지역의 유황별 장래수질예측)

  • 이원호;한양수;연인성;조용진
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • In order to define about concern with discharge and water-quality, it is calculated drought flow, low flow, normal flow and wet flow in Chungju watershed from flow duration analysis. Water quality modeling study is performed for forecasting at upstream of Chungju lake. It is devided method of modeling into before and after the equipment of environmental treatment institution. And it is estimated the change of water quality. Before the equipment of environmental treatment, BOD concentration is increased from 23000 to 2006 years at all site and decrease on 2012 years. The rate of increasing BOD concentration is showed height between 2000 years and 2003 years most of all site. And after the equipment of environmental treatment, it is showed first grade of BOD water quality in most of sample site beside Jucheon river. The result of water quality modeling using drought flow showed that a lot of pollution occurred. And water quality using wet flow is good, so much discharge make more improve water quality than little discharge.

Impact Assessment between Heatwave and Drought Based on PLS-SEM (부분최소제곱 구조방정식(PLS-SEM)을 이용한 폭염과 가뭄의 영향평가)

  • Yoo, Jiyoung;Kim, Jang-Gyeong;Han, Jeongwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.113-121
    • /
    • 2021
  • The occurrence mechanisms of heatwave have been conventionally studied at a synoptic scale. However, the implications of precedent droughts on the following up heatwave occurrences have not been elucidated and are important to address the complex causal mechanisms of heatwaves. Therefore, this study evaluated the causality and implication of the seasonally antecedent droughts to summer heatwaves that occurred for 46 years since 1974 using partial least squares-structural equation modeling (PLS-SEM). The resulting contribution of winter (spring and summer) droughts to summer heatwaves for Seoul-Gyeonggi, Gangwon, and Chungcheong provinces were 37 % (29 % and 22 %), 21 % (18 % and 29 %), and 17 % (8 % and 38 %), respectively. This is due to the regional variability of seasonal drought impacts. Furthermore, Gangwon and Chungcheong provinces, which have a higher level of impacts of summer droughts to summer heatwaves, are more likely to be exposed to the compound drought-heatwave damages compared to Seoul-Gyeonggi province, which has relatively a low-level impact of summer drought.

SOME GENERALIZED GAMMA DISTRIBUTION

  • Nadarajah Saralees;Gupta Arjun K.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.93-109
    • /
    • 2007
  • Gamma distributions are some of the most popular models for hydrological processes. In this paper, a very flexible family which contains the gamma distribution as a particular case is introduced. Evidence of flexibility is shown by examining the shape of its pdf and the associated hazard rate function. A comprehensive treatment of the mathematical properties is provided by deriving expressions for the nth moment, moment generating function, characteristic function, Renyi entropy and the asymptotic distribution of the extreme order statistics. Estimation and simulation issues are also considered. Finally, a detailed application to drought data from the State of Nebraska is illustrated.

Drought Monitoring with Indexed Sequential Modeling

  • Kim, Hung-Soo;Yoon, Yong-Nam
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.125-136
    • /
    • 1997
  • The simulation techniques of hydrologic data series have develped for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etc. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in the western USA since the early of 1980s. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and autoregressive, order-1 model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF