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SOME GENERALIZED GAMMA DISTRIBUTION

SARALEES NADARAJAH! AND ARJUN K. GupTa?

ABSTRACT

Gamma distributions are some of the most popular models for hydro-
logical processes. In this paper, a very flexible family which contains the
gamma distribution as a particular case is introduced. Evidence of flexibil-
ity is shown by examining the shape of its pdf and the associated hazard
rate function. A comprehensive treatment of the mathematical properties
is provided by deriving expressions for the nth moment, moment generating
function, characteristic function, Rényi entropy and the asymptotic distri-
bution of the extreme order statistics. Estimation and simulation issues are
also considered. Finally, a detailed application to drought data from the
State of Nebraska is illustrated.

AMS 2000 subject classifications. Primary 33C90; Secondary 62E99.
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1. INTRODUCTION

A random variable X is said to have the standard gamma distribution if its
probability density function (pdf) is given by

a a-1 “\r
fla) = TR )

(1.1)

for z > 0, @ > 0 and A > 0. Gamma distributions are some of the most popular
models for hydrological processes (Yue, 2001; Yue et al., 2001; Shiau et al., 2006;
references therein). The aim of this paper is to introduce a generalization of
(1.1) that could have much wider applicability in hydrology. The generalization
is given by the pdf

f(z) = Cz* (x + 2)” exp (—Az) (1.2)
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for x > 0, where C = C(a, A, z, p) denotes a normalizing constant. We refer to
this new distribution as the generalized gamma (GG) distribution. The parameter
ranges are given by @ > 0, A > 0, z > 0 and —co < p < co. By equation (2.3.6.9)
in Prudnikov et al. (1986)

o0
/ 2*7H(z + 2)° exp (-Az) dx = 2°HT(Q)¥ (o, @ + 1+ p; Az),
0

where ¥(a, b;u) denotes the confluent hypergeometric function defined by

1 o<
VU (a,bju) = ——/ o711 4 )°7 L exp(—wut)dt. (1.3)
)=t | el (
Thus, the normalizing constant C is given by
1 atp
—— = 1+ p;)2). 14
Clanzp) ~° F(@)¥ (o, 0+ 1+ p; A2) (1.4)

The GG distribution given by (1.2) shares some of the attractive properties of the
gamma distribution. For example, if a random variable X has the GG distribution
with parameters (a, A, a, p) then aZ also has the GG distribution with parameters
(a, M a,az,p). The GG distribution is very flexible. Its particular cases include:
the standard gamma distribution for p = 0 and the exponential distribution for
p=0and a=1.

In the rest of this paper, we provide a comprehensive description of the math-
ematical properties of (1.2). We examine its shape and associated hazard rate
function. We derive formulas for the nth moment, moment generating function
(mgf), characteristic function (¢f), Rényi entropy, and the asymptotic distribu-
tion of the extreme order statistics. We also consider estimation and simulation
issues. Finally, an application to drought data from the State of Nebraska is
illustrated to show (1.2) is a better model than (1.1).

2. SHAPE

The first and second derivatives of log f(x) for the GG distribution are:

dl ~1
ogflz) _e—-1__»

dx T T+ z
and
2 —
d*log f(x) _l-a _»p .. (2.1)
d*z z? (z + 2)?
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Standard calculations based on these derivatives show that f(z) can exhibit the

following shapes:
e If 0 < a < 1 then f monotonically decreases with f(0) = co and f(o0) = 0.

e If & > 1 then f has a single mode at z = zo with f increasing for all z < xo
and decreasing for all x > zy. Furthermore, f(0) = 0, f(co) = 0 and xq is
the solution of

a—1 p
T +w+z

e If o = 1 and either p <0 or —Az < —p < 0 then f monotonically decreases
with f(0) = 1/{z¥(1,2 + p; Az)} and f(oc0) =0.

e If a =1 and p > Az then f has a single mode at © = xp = (p — Az)/A with
f increasing for all x < xp and decreasing for all x > x¢. Furthermore,
f(0) =1/{2%(1,2+ p; A\z)} and f(co0) = 0.

Note that unlike the standard gamma pdf, f can exhibit a unimodal shape even
when a = 1. In fact, if & = 1 then f(z) = C(z + 2)? exp(—Az) is a generaliza-
tion of the exponential distribution and shares many of its attractive properties,
including closure under scale transformations. Some of the possible shapes of f
for selected values of (o, p) and A = z = 1 are illustrated in Figure 2.1.
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FIGURE 2.1 Pdf of the generalized gamma distribution (1.2) for selected values of (a,p) and
A=z=1
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FIGURE 2.2 Hazard rate function of the generalized gamma distribution (1.2) for selected values
of (a,p) and A=z =1.

The hazard rate function defined by h(z) = f(z)/{1 — F(z)} is an important
quantity characterizing life phenomena. A closed form expression for h(x) is
difficult to obtain for the GG distribution. However, we have illustrated, in
Figure 2.2, the shape of the hazard rate function for selected values of (o, p)
and A = z = 1. Evidently, the GG distribution exhibits failure rates which are
monotonically increasing and monotonically decreasing. More importantly, the
GG distribution also exhibits a shape where the failure rate initially increases
before decreasing for all z. Clearly, this is one feature that is not shared by the
standard gamma distribution.

Moreover, since f is log-concave for p > 0 and a > 1 (this follows from the
second derivative (log f)" (x) in (2.1)), note that the generalized gamma must
have increasing failure rate for p > 0 and a > 1 (Gupta and Brown, 2001).

3. MOMENTS

The n** moment of a random variable X having the GG distribution is
(e ]
E(X™) = C’/ "t Mg + 2)P exp (- \z) dz,
0

where C' is the normalizing constant given by (1.4). By the definition, (1.3), of
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the confluent hypergeometric function,
oo
/ 2" e (g 4 2)Pexp (—=Az) d
0
= 2" (n+ )T (n+a,n+a+ 1+ p;A2).

Thus, the n* moment becomes

T+ a)¥ (n+a,n+a+14p;Az)

E(X"™) = 3.1

(X7) ()P (o, + 14 p; Az) (3-1)

In particular,
za¥ (1 + a,a+ 2+ p; Az)
E(X) =
(X) U(a,a+1+ p;Az)
and
2 .
Var (X) = ziofa+ Dav (24 a,a+ 3+ p; Az)

U(a,a+ 1+ p;A2)
2?0 (1 4+ a,a+ 2+ p; \2)

U2 (o, a4+ 14 p;Az) '

Figure 3.1 illustrates the flexibility of the GG distribution. We have plotted
the skewness and kurtosis measures for the standard gamma (p = 0) and gener-
alized gamma (p = —0.5,0.5) distributions. Evidently the GG distribution shows
greater degree of flexibility as compared to the standard gamma.

The mgf of X defined by M(t) = E(exp(tX)) can be derived in a similar
manner to (3.1) by application of the definition (1.3). It turns out that
U(a,a+14+p;(A—1t)2)

U (o, + 1+ p; Az)
Thus, the cf defined by ¥(t) = E(exp(itX)) takes the form
U(a,a+ 1+ p;(A—1it)z)

V(a,a+ 14 p;Az)

M(t) =

b(t) =

where ¢ = y/—1 is the complex number.

4. RENYI ENTROPY

An entropy of a random variable X is a measure of variation of the uncertainty.

Rényi entropy is defined by
Jr(7) = § i 5 log{/f”(w)dw},




98 SARALEES NADARAJAH AND ARJUN K. GupTA

20

15

Skewness

10

FIGURE 3.1 Skewness and kurtosis measures versus o = 1,2,...,10 for the standard and gener-
alized gamma distributions.

where v > 0 and v # 1 (Rényi, 1961). For the pdf (1.2), note that one can write
Fi() = Hler o+ 12270 (ay — v+ 1,07 — 7+ 2+ 7p; 172)
M) ¥ (o, + 14 p; A2)
27 (g + )P
X
za'y—'y+1+'1pr (a,), — v+ 1)
y exp (—Ayz)
U(oey—v+1lay—y+2+7pA72)

Note that the last term integrates to 1 over 0 < x < co. Hence, the Rényi entropy
can be expressed as

. 1 T(lay—~v+1)
Jr(y) = logz+ T—= 5 log {—_‘_FV(a)

U(ay—v+1,ay—v+24+7p; \vz)
X . (4.1)
Y (o, + 1+ p; Az)

Another well-known entropy measure is the Shannon entropy defined by E|[— log

F(X)]. Its form can be determined by limiting v 7 1 in (4.1).

5. ASYMPTOTICS

If X1,...,X, is a random sample from (1.2) and if X = (X; +--- + Xp)/n
denotes the sample mean then by the usual central limit theorem /n(X —
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E(X))/+/Var(X) approaches the standard normal distribution as n — co. Some-
times one would be interested in the asymptotics of the extreme values M, =
max(X1,...,X,) and m, = min(X3, ..., X,). Note from (1.2) that

Z7Pmo Pl exp (<) (5.1)
AL (@)@ (a, @+ 1+ p; Az) | '

1— F(t) ~

as t — oo and that
ta
az®T()¥ (a,a + 1 + p; Az)

F(t) ~

as t — 0. Thus, it follows that

. 1-F(t+z/)) _
gy~ oel?)
and
F(tx)
150 F(t)

Hence, it follows from Theorem 1.6.2 in Leadbetter et al. (1987) that there must
be norming constants a, > 0, b,, ¢, > 0 and d, such that

Pr{an (M, — b,) < x} — exp {—eXp(—w)}

and
Pr{cy, (mn —dn) <z} — 1 —exp(—2z%)

as n — oo. The form of the norming constants can also be determined. For
instance, using Corollary 1.6.3 in Leadbetter et al. (1987), one can see that
an = X and that b, satisfies 1 — F(b,) ~ 1/n as n — oo. Using the fact (5.1),
one can show that

b, = 1 log{I‘(a)\Il(a,a—I— 1 +p;)\z)}

1 a+p—1
—= + —logn + loglogn
o) g g log

A A

A

satisfies 1 — F(b,) ~ 1/n. The constants ¢, and d, can be determined by using
the same corollary.
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6. ESTIMATION

Here, we consider estimation of the parameters of (1.2) by the method of max-
imum likelihood and the method of moments. The log-likelihood for a random

sample 1, ...,%, from (1.2) is:
log L{a, A, 2, p)

n n n
:—nlogK—l—(a—I)Zlogaci-l-leog(xi—i—z)—)\in, (6.1)
i=1

i=1 1=1

- where K = K(a, A, 2, p) = 2°PI(a)¥ (o, a+1+p; Az). The first order derivatives
of (6.1) with respect to the four parameters are:

Olog L n 0K <«
o = Koa "2 l8%

Olog L n oK <
an K oA 2 i

dlog L 0K 1
og n 4 Z

0z K 0z T+ 2
Odlog L n 0K
- o log (z; + 2) .
Bp ’Kap—l—;og(x + 2)

Thus, the maximum likelihood estimators of the four parameters are the simul-
taneous solutions of the equations:

Ko - Rovees -
nor . —Z;a: | (6.3)
%%_Iz{ - pi: mii—z’ (64)
%%%{ = zn:log (i +2). (6.5)

1=1

We know from (1.4) that the constant K involves the confluent hypergeometric
function and numerical routines are widely available for evaluating this function.
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The method of moments estimators of the four parameters are the simultaneous
solutions of the equations:

214 )V (14 a,2 + a+ p; Az2)

T()¥ (oot 1+pre) @
TR+ o)V (2+a,3+a+pAz) .
()P (o, + 14 p; Az) -
T3+ a) U B+ad+a+pre) .
Ia)¥ (o, + 14 p; Az) o
ZT(4+ )P (4+ 0,5+ a+ p;Az) )
94,

F(@)¥ (a,a+ 1+ p; Az)

where s, = (1/n) Y. | x¥ is the k** sample moment, k = 1,2,3,4.

For interval estimation of («, A, 2, p) and tests of hypothesis, one requires the
Fisher information matrix. The second order derivatives of (6.1) with respect to
the four parameters are:

8%log L _282K+1 0K\ ?
Oa? K 602 K2 ’

Ba

PlogL __n °K | n 0K OK

0adN K Oad\ K2 da 0N’

Ll __n K | n 0K OK

0adz  Ko0adz K2 0a 02’

PlogL  n &K | n 0KOK

0adp  KOadp K2 0a 8p’

0% log L ___7182K+£ 8_K 2

X2 K oX  K2\ox) '’

Plogl  n PK  n OKOK

o0z ~  KOX9z K20\ 0z’

PlogL __n 0°K | n 0K 0K

ONdp =~ KOXdp KZ2OX dp’

& log L K OK\? - 1
SIS e
0z K 0z K? \ 0z — (zi +2)

8?log L n ?°K n 0KOK z”: 1

0:0p  Ko:0p K20z 0p itz
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6210gL__£62K+_7_1_ 0K 2
0p2 ~ K op? K2\0p)
Thus, using the fact

1 _ 1 ¥(aa+1l+p—mAz)
(X+2)m|  zm U(a,a+1+p;Az)

3

the elements of the Fisher information matrix can be calculated as
p(_ &lgl) _n®K n (0K\’
T Kda?2 K2\Oa)’
n 0K _ n OKOK
K 08aB)\ K2 da ON’
n 8K  n 9KOK
K 0adz K2 0a 0z’
n #K _ n 0K K
Kdadp K2 0a 0p’
_n PK n <8K )2

Ko  K2\ax

(~ar)
(-5t )
()
(%)
( 8210gL) n 82K n 0KOK
(%)
(")
()
(")

Kooz K2 9x 8z’

n K _ n OKOK

Ko op K20\ dp’

_2821(_1(%)2 np¥ (o, + p — 1; Az)
K 022 K2\ 0z 2T (a,a+ 1+ p;A2)

n PK n 0KOK  n¥(a,a+p)2)

Koz0p K208z 0p 2¥(a,a+1+p;Az)

n®K n (0K\®

K 9p? K2 '

9

7. SIMULATION

Here, we consider simulating from (1.2) by the rejection method with envelope
g (say). It is well known that the scheme for simulating is given by:

Step 1. Simulate X = z from the pdf g.
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Step 2. Simulate Y = UMg(z), where U is an independent uniform random
variable on (0,1) and M is taken such that f(z)/g(z) < M for all .

Step 3. Accept X = x as a realization of a random variable with the pdf f if
Y < f(z). Y > f(x) return to Step 2.

For the pdf (1.2), one can choose the envelope to be

(z) = F(z)g1(x), if0<z<z,
T (1= F(z)) g2(x), if z <z < o0,
where
O(.’Ea_l
qi(e) = —3
and

NoHPLotr=l oy (— Az
w(z) = p(—\z)
I'(a+p,z2)

where I'(+, ) denotes the complementary incomplete gamma function defined by

o0
INa,2) = / exp(—t)t*dt.
z
Note that g, is a power-function pdf while g2 is the pdf of a truncated gamma
distribution. Standard calculations show that the constant M can be chosen to

be

M =

max (1, 2°) ma,x[ 1 T'(a+p,2)
T(a)¥ (o, + 1+ p; Az) aF(z)" (\2)*T? {1 - F(2)}

Hence, simulating from (1.2) amounts to simulating from the power-function and
truncated gamma distributions for which methods are widely available.

8. APPLICATION

Here, we return to the drought problem discussed in Section 1 and provide
an application of the model given by (1.2). The drought data from the State of
Nebraska is used, freely downloadable from the web—site:

http://Iwf.ncdc.noaa.gov/oa/climate/onlineprod/drought /xmgrg3.html.



104 SARALEES NADARAJAH AND ARJUN K. GUPTA

TABLE 8.1 Basic drought statistics for Nebraska PDSI data

Climate | Number of | Drought frequency Mean drought Standard deviation of
division | droughts (number/year) duration (months) | drought duration (months)

1 83 0.75 6.0 8.0

2 66 0.60 8.6 12.0

3 89 0.81 6.3 9.7

5 81 0.74 6.3 10.5

6 920 0.82 6.3 10.1

7 81 0.74 6.1 9.7

8 76 0.69 6.5 134

9 74 0.67 7.5 10.9

TABLE 8.2 Parameter estimates of (1.1) for drought data

Climate division A &
1 0.038 | 0.419
2 0.022 | 0.381
3 0.030 | 0.369
5 0.027 | 0.372
6 0.031 | 0.390
7 0.034 | 0.407
8 0.028 | 0.394
9 0.026 | 0.409

The data comprises of the monthly modified Palmer Drought Severity Index
(PDSI) from the period from January 1895 to December 2004. A drought is said
to have happened when PDSI is below 0 and is defined by the theory of runs
(Yevjevich, 1967). The State of Nebraska is divided into eight climate divisions
numbered 1, 2, 3, 5, 6, 7, 8 and 9—there is no climate division 4 for Nebraska.
Some statistics of the observed drought for the eight climatic divisions are sum-
marized in Table 8.1.

Using the PDSI data, data on drought intensity were obtained for each climate
division. The gamma distribution given by (1.1) has been the traditional model
for drought intensity data (Shiau et al., 2006). Here, we show that the general-
ization given by (1.2) provides a significant improvement. We fitted the models
given by (1.1) and (1.2) to the observed drought intensity data from each climate
division. The fitting of the models was performed by the method of maximum
likelihood by solving the equations (6.2)—(6.5). The quasi-Newton algorithm nlm
in the R software package (Dennis and Schnabel, 1983; Schnabel et al., 1985;
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TABLE 8.3 Parameter estimates of (1.2) for drought data

Climate division A & z p
1 0.011 3.473 | 0.071 -3.654
2 0.010 | 59.316 | 0.001 | -59.296
3 0.005 1.161 | 0.555 -1.598
5 0.000 0.789 | 3.738 -1.816
6 0.002 1.155 | 1.249 -1.890
7 0.003 1.396 | 0.858 -2.074
8 0.000 1.106 | 2.548 -2.184
9 0.004 1.019 | 1.522 -1.550

TABLE 8.4 p values of the Likelihood Ratio Test

Climate division | NLLH for (1.1) | NLLH for (1.2) | p-value
1 254.656 239.693 0.000000
2 224.629 215.403 0.000098
3 266.869 249.179 0.000000
5 254.966 237.529 0.000000
6 277.862 256.113 0.000000
7 251.247 231.099 0.000000
8 243.325 220.443 0.000000
9 248.608 236.953 0.000009

Thaka and Gentleman, 1996) was used to solve the equations. The possibility
of detecting local maxima was avoided by the execution of the algorithm with
different starting values.

The parameter estimates for (1.1) and (1.2) are given in Tables 8.2 and 8.3,
respectively. The negative logarithm of the maximized likelihoods (NLLH) are
shown in Table 8.4. We performed a standard likelihood ratio test of z = 0 and
p = 0 by comparing twice the difference of the two negative logarithms with a
chi square distribution with two degrees of freedom. The p values of this test are
also shown in Table 8.4. The p values are much much smaller than the nominal
0.05. It follows that the fit of (1.2) is significantly better than that of (1.1) for
each of the climate divisions.

The goodness of fits of (1.1) and (1.2) can be examined by probability plots. A
probability plot is where the observed probability is plotted against the probabil-
ity predicted by the fitted model. To check the goodness of fit given by (1.1), one
would plot F'(x(;) versus (i —0.375)/(n+0.25), where F(-) is the cdf correspond-
ing to (1.1) and z(;y are the sorted values, in the ascending order, of the observed



106 SARALEES NADARAJAH AND ARJUN K. GUPTA

= ]
o -
L=
% - _|
=
o S
L=
= _|
=
0.0 o.4 o.8 0.0 o.<4 o.8
Observed Observed

FIGURE 8.1 Probability plots on the fits of (1.1) and (1.2) for drought intensity data from climate
division 1 of Nebraska.
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FIGURE 8.2 Probability plots on the fits of (1.1) and (1.2) for drought intensity data from climate
division 2 of Nebraska.
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FIGURE 8.3 Probability plots on the fits of (1.1) and (1.2) for drought intensity data from climate
division 8 of Nebraska.
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FIGURE 8.4 Probability plots on the fits of (1.1) and (1.2) for drought intensity data from climate
division 5 of Nebraska.
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FIGURE 8.5 Probability plots on the fits of (1.1) and (1.2) for drought intensity data from climate
division 6 of Nebraska.
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F1GURE 8.6 Probability plots on the fits of (1.1) and (1.2) for drought intensity data from climate
division 7 of Nebraska.
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FIGURE 8.7 Probability plots on the fits of (1.1) and (1.2) for drought intensity date from climate
division 8 of Nebraska.
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FIGURE 8.8 Probability plots on the fits of (1.1) and (1.2) for drought intensity data from climate
division 9 of Nebraska.

drought intensity data. To check the goodness of fit given by (1.2), one would
plot F(x(;) versus (i — 0.375)/(n 4 0.25), where F(-) is the cdf corresponding to
(1.2). These plots for the eight climate divisions are shown in Figures 8.1 to 8.8
The plots on the left and right correspond to the gamma and generalized gamma
distributions, respectively. It is evident that the generalized gamma distribution
provides an excellent fit for each climate division. Furthermore, its fit appears
significantly better than that of the gamma distribution at least visually. This
finding is consistent with the conclusions from the likelihood ratio test.

ACKNOWLEDGMENTS

The authors would like to thank the Editor—in—Chief and the two referees for
carefully reading the paper and for their great help in improving the paper.



SOME GENERALIZED GAMMA DISTRIBUTION 109

REFERENCES

DENNIS, J. E. AND SCHNABEL, R. B. (1983). Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

GupTa, R. C. AND BROWN, N. (2001). “Reliability studies of the skew-normal distribution
and its application to a strength-stress model”, Communications in Statistics. Theory
and Methods, 30, 2427-2445.

IaAKA, R. AND GENTLEMAN, R. (1996). “R: A language for data analysis and graphics”,
Journal of Computational and Graphical Statistics, 5, 299-314.

LEADBETTER, M. R., LINDGREN, G. AND ROOTZEN, H. (1987). Extremes and Related Prop-
erties of Random Sequences and Processes, Springer-Verlag, New York/ Berlin.

PrupNikov, A. P., BRycHkov, Y. A. AND MARICHEV, O. 1. (1986). Integrals and Series,
Gordon and Breach Science Publishers, Amsterdam.

RENYI, A. (1961). “On measures of entropy and information”, Proceedings of the 4th Berkeley
Symposium on Mathematical Statistics and Probability, 1, 547-561, University of Califor-
nia Press, Califonia.

SCHNABEL, R. B., KoonTz, J. E. AND WEISS, B. E. (1985). “A modular system of algorithms
for unconstrained minimization”, Association for Computing Machinery. Transactions on
Mathematical Software, 11, 419-440.

Suiavu, J.-T., FENG, S. AND NADARAJAH, S. (2006). “Assessment of hydrological droughts
for the Yellow River, China using copulas”, In Hydrological Processes.

YEVJEVICH, V. (1967). “An objective approach to definitions and investigations of continental
hydrologic droughts”, Hydrologic Paper, 28, Colorado State University, Fort Collins.
YuE, S. (2001). “A bivariate gamma distribution for use in multivariate flood frequency

analysis”, Hydrological Processes, 15, 1033-1045.

YUE, S., OvArDA, T. B. M. J. AND BOBEE, B. (2001). “A review of bivariate gamma

distributions for hydrological application”, Journal of Hydrology, 246, 1-18.



