• Title/Summary/Keyword: Droplet Generation

검색결과 77건 처리시간 0.029초

Generation of Fine Droplets in a Simple Microchannel (유체 소자를 이용한 미세 액적 생성)

  • Kim, Su-Dong;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2658-2663
    • /
    • 2008
  • In the present study, we designed a microfluidic flatform that generates monodisperse droplets with diameters ranging from hundreds of nanometers to several micrometers. To generate fine droplets, T-junction and flow-focusing geometry are integrated into the microfluidic channel. Relatively large aqueous droplets are generated at the upstream T-junction and transported toward the flow-focusing geometry, where each droplet is broken up into the targeted size by the action of viscous stresses. Because the droplet prior to rupture blocks the straight channel that leads to the flow-focusing geometry, it moves very slowly by the pressure difference applied between the advancing and receding regions of the moving droplet. This configuration enables very low flow rate of inner fluid and higher flow rate ratio between inner and outer fluids at the flow-focusing region. It is shown that the present microfluidic device can generate droplets with diameters about 1 micrometer size and standard deviation less than 3%.

  • PDF

The Hydrogen Generation's Characteristics using Plasma Reactor of Multi-needle Electrode Type (다중침전극형 플라즈마 반응기를 이용한 수소발생 특성)

  • Park, Jae-Yoon;Kim, Jong-Seok;Jung, Jang-Gun;Goh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제17권11호
    • /
    • pp.1246-1251
    • /
    • 2004
  • This paper is investigated about the effect of carrier gas type and the humidity for generating hydrogen gas. The vibration of the water surface is more powerful with increasing applied voltage. In this experimental reactor which is made of multi-needle and plate, the maximum acquired hydrogen production rate is about 3500 ppm. In the experimental result of generating hydrogen gas by non-thermal plasma reactor, the rate of generating hydrogen gas is different with what kind of carrier gas is. We used two types of carrier gas, such as $N_2$ and He. $N_2$ as carrier gas is more efficient to generate hydrogen gas than He because $N_2$ is reacted with $O_2$, which is made from water dissociation. In comparison with water droplet by humidifier and without water droplet by humidifier, the generation of hydrogen gas is decreased in case of water droplet by humidifier. That is the result that the energy for water dissociation is reduced on water surface because a part of plasma energy is absorbed at the small water molecular produced from humidifier.

Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding (MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • 제17권3호
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

EHD 원리를 이용한 정전기장 유도 잉크젯 프린터 헤드의 마이크로 Drop-on-Demand 제팅 성능 연구

  • Choe, Jae-Yong;Kim, Yong-Jae;Son, Sang-Uk;An, Gi-Cheol;Lee, Seok-Han;Go, Han-Seo;Nguyen, Vu Dat;Byeong, Do-Yeong
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1947-1950
    • /
    • 2008
  • Printing technology is a very useful method in the several process of industrial fabrication due to noncontact and fast pattern generation. To make micro pattern, we investigate the electrostatic induced inkjet printer head for micro droplet generation and drop-on-demand jetting. In order to achieve the drop-on-demand micro droplet ejection by the electrostatic induced inkjet printer head, the pulsed DC voltage is supplied. In order to find optimal pulse conditions, we tested jetting performance for various bias and pulse voltages for drop-on-demand ejection. In this result, we have successful drop-on-demand operation and micro patterning. Therefore, our novel electrostatic induced inkjet head printing system will be applied industrial area comparing conventional printing technology.

  • PDF

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids (정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구)

  • Kim, Sang-Su;Gu, Bon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제26권4호
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

Electrohydrodynamic Characteristics of an Electro-Spray System (전기 분무 시스템의 전기수력학적 특성)

  • Lee, Jae-Bok;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제23권8호
    • /
    • pp.1031-1039
    • /
    • 1999
  • Electrospraying comprises the generation of liquid droplets by applying a high voltage to the surface of a liquid. By monitoring the current and the flow rate it was possible to obtain a stable cone jet mode in a given condition. In this work the liquid contained NaCl particles resolved in distilled water. The NaCl particles increased concentration of the ionized solution and thus increased electrical conductivity of the liquid, which was inversely proportional to the flow rate in the cone jet mode. A number of sprayed droplets were sampled and dried enough, and then the size of NaCl particles were measured. The measured droplet diameter was a little larger than two theoretical diameters, Rayleigh diameter and mobility diameter.

Numerical Analysis on the Collision Behaviors of in-flight Droplets During Gas Atomization (가스 분무 시 비행 액적의 충돌 현상에 관한 수치적 고찰)

  • Seok, Hyun Kwang
    • Korean Journal of Metals and Materials
    • /
    • 제46권8호
    • /
    • pp.506-515
    • /
    • 2008
  • Recently, it is exceedingly required to produce metal powders with tailored shape and phase altogether in order to fabricate high performance functional parts such as magnetic core or electro-magnetic noise suppressor for high frequency usage. Therefore, the collision phenomena of in-flight droplets against chamber wall or neighboring in-flight droplets each other is investigated by a computational method in order to get useful information about how to design the atomizing system and how to tailor process parameters not to make irregular-shaped powders during gas atomization process. As a results, smaller powders, lower melt temperature are known to be favorable for droplets not to collide against chamber wall. In additions, powders of narrower size distribution range, lower droplet generation rate, lower melt temperature, lower gas velocity are desirable to prevent droplet-collisions against neighboring in-flight droplets.

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.

Generation of Water Droplet Ion Beam for ToF-SIMS Analysis

  • Myoung Choul Choi;Ji Young Baek;Aram Hong;Jae Yeong Eo;Chang Min Choi
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.147-152
    • /
    • 2023
  • The increasing demand for two-dimensional imaging analysis using optical or electronic microscopic techniques has led to an increase in the use of simple one-dimensional and two-dimensional mass spectrometry imaging. Among these imaging methods, secondary-ion mass spectrometry (SIMS) has the best spatial resolution using a primary ion beam with a relatively insignificant beam diameter. Until recently, SIMS, which uses high-energy primary ion beams, has not been used to analyze molecules. However, owing to the development of cluster ion beams, it has been actively used to analyze various organic molecules from the surface. Researchers and commercial SIMS companies are developing cluster ion beams to analyze biological samples, including amino acids, peptides, and proteins. In this study, a water droplet ion beam for surface analysis was realized. Water droplets ions were generated via electrospraying in a vacuum without desolvation. The generated ions were accelerated at an energy of 10 keV and collided with the target sample, and secondary ion mass spectra were obtained for the generated ions using ToF-SIMS. Thus, the proposed water droplet ion-beam device showed potential applicability as a primary ion beam in SIMS.

Effect of droplet protection screen height on the prevention ability of infectious droplet airborne transmission in closed space (밀폐공간에서 비말 가림막 높이에 따른 감염성 비말 공기전파 차단능력 평가)

  • Heo, Jieun;Cho, Hee-joo;Park, Hyun-Seol;Shin, Dongho;Shim, Joonmok;Joe, Yun-Haeng
    • Particle and aerosol research
    • /
    • 제17권2호
    • /
    • pp.37-42
    • /
    • 2021
  • Although the installation of droplet protection screen (DPS) is known to prevent droplet transmission, there is still a lack of knowledge in effectiveness of DPS installation to block the airborne transmission. In this study, the prevention ability of DPS against airborne transmission was evaluated according to the DPS height. When the DPS was not installed, the maximum concentration of PM1.0 at the location opposite to infected person was 35% of that at the infected person location. When the DPS was installed, the DPS effectively prevented the airborne transmission, consequently approximately 7% of generated particles were measured at the opposite location from particle generation position (infected person location). The prevention ability of DPS increased with DPS height, the maximum prevention efficiency of 95.1% was obtained when the DPS height was 900mm. Moreover, the speed of airborne transmission was delayed by installation of DPS, and the delay time increased with DPS height.