• 제목/요약/키워드: Drop analysis

검색결과 1,883건 처리시간 0.029초

배수관망내 수압부족시 절점수요량의 변화에 대한 기초적 고찰 (A Basic Study for the Variation of Nodal Demands According to the Low Pressure in Water Distribution Systems)

  • 현인환;이상목;김영환;안용호
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.726-732
    • /
    • 2002
  • Pressure drop could happen in the water distribution systems due to pipe breaks or maintenance. The pressure drop causes the water service shutdown and nodal water demands should be reduced in some areas. The conventional analysis method of water distribution systems can not consider the change of nodal water demands caused by these pressure drops. This study is to investigate the variation of nodal water demands according to the nodal water pressure and its effect on the analysis of water distribution systems. For these purpose, one real water service district was selected as a study area. As a result, nodal water demand patterns according to the water pressure could be suggested. Also, we could confirm that the suggested new analysis method for the water distribution systems which considering water pressure drops could be more reliable than the conventional method.

편평관군 열교환기에서의 응축 열전달 및 압력강하 특성해석 (Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Flat Tube-Bundle Heat Exchanger)

  • 박병규;이준식
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1177-1184
    • /
    • 2005
  • A numerical analysis was carried out on the heat and mass transfer, and pressure drop characteristics of the modular tube bundle heat exchanger. The finite volume method with a $k-\varepsilon$ turbulence model was used for the analysis. Due to condensation, the total heat transfer rate is observed about $4\~8\%$ higher than that on dry surfaces. Total heat transfer rate increases with increase in the velocity, temperature and relative humidity of incoming air. It also increases with decreasing the aspect ratio of heat exchanger tube. The inlet velocity of cooling water has little effect on the total heat transfer when the other conditions are fixed.

PARSIVEL 측정 자료를 활용한 대관령 산악지역 강수입자분포 모형 연구 (A Study on a Model of Rainfall Drop-Size Distribution over Daegwanryeong Mountainous Area Using PARSIVEL Observations)

  • 박래설;장민;오성남;홍윤기
    • 한국지구과학회지
    • /
    • 제35권7호
    • /
    • pp.518-528
    • /
    • 2014
  • 본 연구에서는 대관령 지역에서의 광학우적계(PARSIVEL disdrometer) 강수관측으로부터 산출된 강수율에 따른 강수입자분포 자료를 바탕으로 기존의 강수입자분포 모형을 개선하였다. 선행 연구에서 제안한 다양한 강수입자분포 모형과 측정 자료와의 상관성을 분석한 결과, 대관령 지역에 적용 가능한 원형 모형은 개선된 ${\Gamma}$ 분포 모형임을 확인하였다. 원형 모형을 대관령 지역에 적용할 수 있도록, 민감도 실험을 통해 최적의 매개변수들(${\alpha}$, A, B)을 산정하였으며, 다섯 가지 강수율에 대한 강수입자분포 모형을 제안하였다. 강수율에 따른 강수입자분포 모형의 결과는 관측에서 측정된 값과 높은 상관성($R^2=0.975$)을 보였다. 강수율에 따라 표현되는 강수입자분포 모형을 일반화 형태로 개선하기 위해 강수율과 매개변수의 상관성을 도출하여 일반식을 결정하였다. 일반화된 강수입자분포 모형은 대관령 지역의 강수입자분포 측정 자료와 높은 상관성($R^2=0.953$)을 보였으며, 이는 본 연구에서 제안한 모형이 대관령 지역의 강수입자분포를 모의하는데 효과적임을 의미한다. 그러나 본 연구에서 제안된 강수입자분포 모형은 대관령 지역의 강수입자분포에만 최적화 되었다는 한계성이 있어, 따라서 한반도를 대표하는 모형을 개발하기 위해서는 다른 지역에 대한 광범위한 측정이 필요하다.

멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -I : 검증을 통한 수치해석 기법 개발- (Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -I : Development of Numerical Simulation Analysis Technique through Validation-)

  • 이상갑;황정오;김화수
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.726-734
    • /
    • 2008
  • While the structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers has to be carried out in consideration of sloshing impact pressure, it is very difficult to figure out its dynamic response behaviors due to its very complex structural arrangements/materials and complicated phenomena of sloshing impact loading. For the development of its original technique, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In this study, for the exact understanding of dynamic response behavior of CCS structure in membrane Mark III type LNG carriers under sloshing impact pressure, its wet drop impact response analyses were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. It might be thought that the structural response behaviors of impact response analysis, such as impact pressure impulses and resulted strain time histories, generally showed very good agreement with experimental ones with very appropriate use of FSI analysis technique of LS-DYNA code, finite element modeling and material properties of CCS structure, finite element modeling and equation of state(EOS) of fluid domain.

흡연집진기 내 스트레이너 및 카본필터 압력투과 해석 (Dust collector strainer and carbon filter pressure permeation analysis)

  • 이치우
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.5-10
    • /
    • 2015
  • Dust collector is one of the most widely used equipment among the method of separating particles, it filters exhaust gas having various kinds of dusts through several filters installed on parallel. This research investigated the moving characteristic of Honeycomb-type carbon filter in pressure drop of smoking collector's ventilation system. It also compared pressure transmission coefficient through pressure drop according to flow velocity change.

유막의 온도변화를 고려한 플로팅 링 저어널베어링의 성능해석 (An Analysis of Performance of Floating-Ring Journal Bearing Including Thermal Effects)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • 제17권2호
    • /
    • pp.130-137
    • /
    • 2001
  • In this paper, the thermal effects on the performance of floating ring journal bearing are investigated theoretically. The numerical analyses include pressure drop at inner film due to a centrifugal force, fluid momentum effects of supply oil into inner film and thermal effects in lubricating films. All performance data are presented as the rotating speed of journal from 10,000 rpm to 70,000 rpm.

두께가 급격히 변하는 영역에서 고분자 유동에 의한 복굴절 (Flow-Induced Birefringence of Polymers in the Region of Abrupt Thickness Transition)

  • 이호상
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.20-25
    • /
    • 2009
  • A finite element analysis was carried out for a 4:1 planar contraction die for polymer melts using the viscoelastic constitutive equation of Leonov. Viscoelastic fluids showed significant differences in pressure drop and birefringence in contraction and expansion flows. The pressure drop was higher and the birefringence smaller in expansion than in contraction flow. The difference increased with increasing flow rate. The nonlinear Leonov model was shown to describe the viscoelastic effects observed in experiments.

A Study on the Tolerance Band of Voltage Drop during Motor Startup for Refineries and Chemical Plants with Isolated Power Systems

  • Shin, Ho-Jeon;Cho, Man-Young;Chun, Hong-Il;Kim, Jin-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.486-493
    • /
    • 2017
  • Refineries and chemical plants with isolated power systems that have a limited power supply are more susceptible to voltage changes from disturbances compared to power systems connected with a power company. Furthermore, most loads in such cases are induction motor loads, and therefore, transient voltage characteristics when starting a high-capacity motor must be examined. In general, high-capacity motors are customized appropriately to the load performance curve by the manufacturer during the construction of an industrial plant. Subsequently, when complying with the voltage drop permitted by international standards during the design process, power supply equipment such as transformers and generators is overdesigned. Therefore, a novel analysis is necessary on standards for startup and constraint voltage drops, as well as on identifying the voltage drop limitations for starting high-capacity motors in refineries and chemical plants with isolated power systems. In this study, field tests on an industrial plant were conducted, and simulations modeled under conditions identical to those of the field test system were performed using the general-purpose program ETAP in order to compare the results.

핀치이론의 수정 모델을 이용한 스프레이 모드의 해석 (Analysis of Spray Mode Using Modified Pinch Instability Theory)

  • 박아영;;김선락;유중돈
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.88-93
    • /
    • 2009
  • While the pinch instability theory (PIT) has been widely employed to analyze the spray transfer mode in the gas metal arc welding (GMAW), it cannot predict the detaching drop size accurately. The PIT is modified in this work to increase the accuracy of prediction and to simulate the molten tip geometry to be more physically acceptable. Since the molten tip becomes a cone shape in the spray mode, the effective wire diameter is formulated that the effective diameter is inversely proportional to current square. Modifications are also made to consider the finite length of the liquid column and current leakage through the arc. While the effective diameter influences drop transfer significantly, the current leakage has negligible effects. The effects of modifications on drop transfer are analyzed, and the predicted drop diameters show good agreements with the experimental data of the steel wire.