DOI QR코드

DOI QR Code

A Study on a Model of Rainfall Drop-Size Distribution over Daegwanryeong Mountainous Area Using PARSIVEL Observations

PARSIVEL 측정 자료를 활용한 대관령 산악지역 강수입자분포 모형 연구

  • Park, Rae-Seol (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Jang, Min (Weatherlink) ;
  • Oh, Sung Nam (ReSEAT Program, Korean Institute of Science and Technology Information) ;
  • Hong, Yun-Ki (Agency for Defense Development)
  • Received : 2014.07.01
  • Accepted : 2014.10.21
  • Published : 2014.12.31

Abstract

In this study, a model of rainfall drop-size distribution was modified using PARSIVEL-retrieved rainfall drop-size distribution over Daegwanryeong mountainous area. A prototype model (Modified ${\Gamma}$ distribution model) applicable for this area was decided through the comparative analysis between results from models proposed by preceding research and PARSIVEL-retrieved data over Daegwanryeong mountainous area. In order to apply the prototype model for Daegwanryeong region, the parameters (${\alpha}$, A, B) were made via sensitivity experiments and models of the rainfall drop-size distributions for five cases of rainfall rate were proposed. Results from the proposed five models showed high correlations with PARSIVEL-retrieved data ($R^2=0.975$). In order to suggest a generalized form of rainfall drop-size distribution, interaction equations between rainfall rates and parameters (${\alpha}$, A, B) were investigated. The generalized model of the rainfall drop-size distribution was highly correlated with PARSIVEL-retrieved data ($R^2=0.953$), which means that the proposed model from this study was effective for simulating the rainfall drop-size distribution over Daegwanryeong region. However, the proposed model was optimized for rainfall drop-size distribution over Daegwanryeong region. Therefore, broad observations of other regions are necessary in order to develop the representative model of the Korean peninsula.

본 연구에서는 대관령 지역에서의 광학우적계(PARSIVEL disdrometer) 강수관측으로부터 산출된 강수율에 따른 강수입자분포 자료를 바탕으로 기존의 강수입자분포 모형을 개선하였다. 선행 연구에서 제안한 다양한 강수입자분포 모형과 측정 자료와의 상관성을 분석한 결과, 대관령 지역에 적용 가능한 원형 모형은 개선된 ${\Gamma}$ 분포 모형임을 확인하였다. 원형 모형을 대관령 지역에 적용할 수 있도록, 민감도 실험을 통해 최적의 매개변수들(${\alpha}$, A, B)을 산정하였으며, 다섯 가지 강수율에 대한 강수입자분포 모형을 제안하였다. 강수율에 따른 강수입자분포 모형의 결과는 관측에서 측정된 값과 높은 상관성($R^2=0.975$)을 보였다. 강수율에 따라 표현되는 강수입자분포 모형을 일반화 형태로 개선하기 위해 강수율과 매개변수의 상관성을 도출하여 일반식을 결정하였다. 일반화된 강수입자분포 모형은 대관령 지역의 강수입자분포 측정 자료와 높은 상관성($R^2=0.953$)을 보였으며, 이는 본 연구에서 제안한 모형이 대관령 지역의 강수입자분포를 모의하는데 효과적임을 의미한다. 그러나 본 연구에서 제안된 강수입자분포 모형은 대관령 지역의 강수입자분포에만 최적화 되었다는 한계성이 있어, 따라서 한반도를 대표하는 모형을 개발하기 위해서는 다른 지역에 대한 광범위한 측정이 필요하다.

Keywords

References

  1. Ajayi, G.O. and Olsen, R.L., 1985, Modelling of tropical raindrop size distribution for microwave and milimeter wave applications. Radio Science, 20, 193-202. https://doi.org/10.1029/RS020i002p00193
  2. Brandes, E.A., Zhang, G., and Vivekanandan, J., 2004, Comparison of polarimertic radar drop size distribution retrieval algorithms. Journal of Atmospheric and Oceanic Technology, 21, 584-598. https://doi.org/10.1175/1520-0426(2004)021<0584:COPRDS>2.0.CO;2
  3. Cecchini, M.A., Machado, L.A.T., and Artaxo, P., 2014, Droplet Size Distributions as a function of rainy system type and Cloud Condensation Nuclei concentrations. Atmospheric Research, 143, 301-312. https://doi.org/10.1016/j.atmosres.2014.02.022
  4. Cha, J.-W., Chang, K.-H., Oh, S.-N., Choi, Y.-J., Jeong, J.-Y., Jung, J.-W., Yang, H.-Y., Bae, J.-Y., and Kang, S.-Y., 2010, Analysis of observational cases measured by MRR and PARSIVEL disdrometer for understanding the physical characteristics of precipitation. Atmosphere, 20, 37-47. (in Korean)
  5. Ihara T., Furuhana, Y., and Manabe, T., 1986, Modification of Morita and Higuti's prediction method of lognomal rain attenuation distribution by using spatial correction of specific attenuation. The Institute of Electronics, Informations and Communication Engineers Transaction, E69, 139-147.
  6. Jung, S.-P., Lim, Y.-K., Kim, K.-H., Han, S.-O., and Kwon, T.-Y., 2014, Characteristics of precipitation over the east coast of Korea based on the special observation during the winter season of 2012. Journal of the Korean Earth Science Society, 35, 41-53. (in Korean) https://doi.org/10.5467/JKESS.2014.35.1.41
  7. Laws, J.O. and Parsons, D.A., 1943, The relation of raindrop-size to intensity. Transaction American Geophysical Union, 24, 452-460. https://doi.org/10.1029/TR024i002p00452
  8. Lee, B.-E., Riu, K.-J., Shin, S.-H., and Kwon, S.-B., 2003, Development of a water droplet erosion model for large steam turbine blades. Korean Society of Mechanical Engineers International Journal, 17, 114-121. (in Korean)
  9. Marshall, J.S. and Palmer, W.McK., 1948, Short contributions: The distribution of raindrops with size. Journal of the Meteorological Society of Japan, 5, 165-166.
  10. Oh, S.N. and Jung, J.W., 2013, Measurements of cloud raindrop particles using the ground optical instruments and small doppler radar at Daegwallyeong mountain site. Korean Remote Sensing, 29, 293-306. https://doi.org/10.7780/kjrs.2013.29.3.2
  11. Petty, G.W. and Huang, W., 2011, The modified gamma size distribution applied to inhomogeneous and nonspherical particles: Key relationships and conversions. Journal of the Atmospheric Sciences, 68, 1460-1473. https://doi.org/10.1175/2011JAS3645.1
  12. Ranger, A.A. and Nicholls, J.A., 1969, Aerodynamics shattering of liquid drops. The American Institute Aeronautics and Astronautics Journal, 7, 285-290. https://doi.org/10.2514/3.5087
  13. Rha, D.-K., Kwak, C.-H., Suh, M.-S., and Hong, Y., 2005, Analysis of the characteristics of precipitation over South Korea in terms of the associated synoptic patterns: A 30 Years Climatology (1973-2002). Journal of the Korean Earth Science Society, 26, 732-743. (in Korean)
  14. Sekhon, R.S. and Srivastava, R.C., 1970, Snow size spectra and radar reflectivity. Journal of the Atmospheric Sciences, 27, 299-307. https://doi.org/10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2
  15. Ulbrich, C.W., 1983, Natural variations in the analytical form of the raindrop size distribution. Journal of Climate and Applied Meteorology, 22, 1764-1775. https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
  16. Willis, P.T., 1984, Functional fits to some observed drop size distributions and parameterizations of rain. Journal of Atmospheric Science, 41, 1648-1661. https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2
  17. Willis, P.T. and Tattelman, P., 1989, Drop-size distributions associated with intense rainfall. Journal of Climate and Applied Meteorology, 28, 3-15. https://doi.org/10.1175/1520-0450(1989)028<0003:DSDAWI>2.0.CO;2
  18. Yang, H.-Y., Chang, K.-H., Cha, J.-W., Choi, Y.-J., and Ryu, C.-S., 2012, Characteristics of precipitable water vapor and liquid water path by microwave radiometer. Journal of the Korean Earth Science Society, 33, 233-241. (in Korean) https://doi.org/10.5467/JKESS.2012.33.3.233