• Title/Summary/Keyword: Drop Stability

Search Result 234, Processing Time 0.038 seconds

Mode Change from Cone-jet to Dripping in Electrospraying (전기분무 콘제트-드리핑 모드 변환)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2971-2976
    • /
    • 2007
  • The mode change from Taylor cone-jet to dripping in electrospraying has been analytically investigated. The change has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

Heat Exchanger Optimization using Progressive Quadratic Response Surface Method (순차적 2 차 반응표면법을 이용한 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Kim, Yang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this study, the shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. To do this, a new sequential approximate optimization (SAO) is proposed and it is integrated with the computational fluid dynamics (CFD). In thermal/fluid systems for constrained nonlinear optimization problems, three fundamental difficulties such as high cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are confronted. To overcome these problems, the progressive quadratic response surface method (PQRSM), which is one of the sequential approximate optimization algorithms, is proposed and the heat sink is optimize by means of the PQRSM.

  • PDF

Prediction of Dynamic Stability Derivatives Using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 동안정 미계수 예측)

  • Park Soo Hyung;Kim Yoonsik;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.78-84
    • /
    • 2001
  • A dual-time stepping algorithm combined with a parallelized multigrid DADI method is presented to predict the dynamic damping coefficients. The Basic Finner model is chosen to validate the prediction capability of the present unsteady Euler method. The linearity of the pitch- and roll-damping coefficients is shown in the low angular rates and the interesting large drop and stiff increment in transonic region for roll-damping coefficients are explained in detail. Through the analysis for the pressure distributions at Mach number 1.0 to 1.2, the sudden drop results from the normal shock and the stiff increment of roll-damping reflects the transition of the normal shock to the oblique shock. The results also show that the Euler equations can give the damping coefficients with a comparable accuracy.

  • PDF

A Singular Perturbation-Like Approach to EDFA Gain Control Based on Observer Techniques

  • Song, Seong-Ho;Chang, Dong Eui;Lee, Kwang Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1864-1876
    • /
    • 2015
  • In this paper, we propose a singular perturbation-like approach to EDFA gain controller design and analysis. Considering a three-level model of EDFA, a gain controller containing a state observer and a channel add/drop estimator is designed based on a singular perturbation - like concept. The proposed design methodology is shown to be effective and advantageous not only in theoretically verifying the asymptotic stability of systems with multi-time scales such as EDFA but also in designing an asymptotic estimator for channel add/drops which does not satisfy the matching condition.

Operating Characteristic Analysis of the Induction Generator by the Reactor Starting (리액터 기동 유도발전기의 동작 특성 해석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.138-142
    • /
    • 2014
  • In general, the voltage stability of induction generator is lower than synchronous generator. However, induction generator has many advantages rather than a synchronous generator in terms of price and maintenance. So Induction generator is used little by little in small hydroelectric power station rather than 1000kW recently. Squirrel cage induction generator generates a high inrush current at the grid-connection. This high inrush current causes a voltage drop on the grid. In order to increase the penetration of the induction generator, it is necessary to present a method of reducing inrush current. In this study, we suggested that it is possible to present a reactor startup method, by applying the parameter to reduce the voltage drop.

A novel integrated a-Si:H gate driver

  • Lee, Jung-Woo;Hong, Hyun-Seok;Lee, Eung-Sang;Lee, Jung-Young;Yi, Jun-Shin;Bae, Byung-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1176-1178
    • /
    • 2007
  • A novel integrated a-Si:H gate driver with high reliability has been designed and simulated. Since the a-Si:H TFT is easily degraded by gate bias stress, we should optimize the circuit considering the threshold voltage shift. The conventional circuit shows voltage drop at the input stage by threshold voltage of the TFT, however, the proposed circuit dose not shows voltage drop and keeps constant regardless of threshold voltage shift of the TFT.

  • PDF

Assessment of a Phase Doppler Anemometry Technique in Dense Droplet Laden Jet

  • Koo, Ja-Ye;Kim, Jong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1083-1094
    • /
    • 2003
  • This study represents an assessment of the phase-Doppler technique to the measurements of dense droplet laden jet. High-pressure injection fuel sprays have been investigated to evaluate the use of the Phase-Doppler anemometry (PDA) technique. The critical issue is the stability of the phase-Doppler anemometry technique for dense droplet laden jet such as Diesel fuel spray in order to insure the results from the drop size and velocity measurements are repeatable, consistent, and physically realistic because the validation rate of experimental data is very low due to the thick optical density. The effect of shift frequency is minor, however, the photomultiplier tube (PMT) voltage setting is very sensitive to the data acquisition and noise in dense droplet laden jet. The optimum PMT voltage and shift frequency should be chosen so that the data such as volume flux and drop diameter do not change rapidly.

Analysis of Colloid Thrusters for Nano-satellite Propulsion (나노인공위성 추진용 콜로이드 추력기 해석)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.175-178
    • /
    • 2007
  • The mode transition from cone-jet to dripping in colloid thruster operation has been analytically investigated. The transition has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

Optimal Design of a Heat Exchanger with Vortex Generator (와류발생기가 부착된 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1219-1224
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for thermal stability is conducted numerically. To acquire the optimal design variables, the CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method. The results show that when the temperature rise is less than 40 K, the optimal design variables are as follows; $B_1=2.584mm$, $B_2=1.741mm$, and t = 7.914 mm. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The Pareto optimal solutions are also presented between the pressure drop and the temperature rise.

  • PDF

Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm (순차적 근사최적화 기법을 이용한 방열판 최적설계)

  • Park Kyoungwoo;Choi Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1156-1166
    • /
    • 2004
  • The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).