• Title/Summary/Keyword: Drone images

Search Result 203, Processing Time 0.023 seconds

A Study on Underwater Camera Image Correction for Ship Bottom Inspection Using Underwater Drone (수중드론을 활용한 선박 선저검사용 수중 카메라 영상보정에 대한 연구)

  • Ha, Yeon-chul;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.186-192
    • /
    • 2019
  • In general, many marine organisms are attached to the bottom of a ship in operation or a ship in construction. Due to this phenomenon, the roughness of the ship surface increases, resulting in loss of ship speed, resulting in economic losses and environmental pollution. This study acquires / utilizes camera images attached to ship's bottom and underwater drones to check the condition of bottom. The acquired image will determine the roughness according to marine life by the administrator's visual confirmation. Therefore, by applying a filter algorithm to correct the image to the original image can help in the correct determination of whether or not attached to marine life. Various correction filters are required for the underwater image correction algorithm, and the lighting suitable for the dark underwater environment has a great influence on the judgment. The results of the research test according to the calibration algorithm and the roughness of each algorithm are considered to be applicable to many fields.

Target Latitude and Longitude Detection Using UAV Rotation Angle (UAV의 회전각을 이용한 목표물 위경도 탐지 방법)

  • Shin, Kwang-Seong;Jung, Nyum;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.107-112
    • /
    • 2020
  • Recently, as the field of use of drones is diversified, it is actively used not only for surveying but also for search and rescue work. In these applications it is very important to know the location of the target or the location of the UAV. This paper proposes a target detection method using images taken from drones. The proposed method calculates the latitude and longitude information of the target by finding the location of the target by comparing it with the image to find the image taken by the drone. The exact latitude and longitude information of the target is calculated by calculating the actual distance corresponding to the distance of the image image using the characteristics of the pinhole camera. The proposed method through the actual experiment confirmed that the latitude and longitude of the target was accurately identified.

Underwater Drone Development for Ship Inspection Part 2: Monitoring System and Operation (선박 검사 수중 드론 개발 Part 2: 모니터링 시스템 및 운용)

  • Ha, Yeon-Chul;Kim, Jin-Woo;Kim, Goo;Jeong, Kyeong-Taek;Choi, Hyun-Deuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.133-141
    • /
    • 2020
  • In this paper, the communication method of data information accepted by underwater drones and the implementation method to console display of data information were described, and the function of integrated monitoring system interface and the design and implementation of sonar interface were explained. The operation and posture of underwater drones can be controlled using a controller connected to the console, and the distance information between underwater drones and obstacles is obtained from sonar so that they can be visually displayed on the console screen along with camera images. The integrated monitoring navigation console is implemented to suit improvements, making it convenient and easy for workers to use. In addition, by upgrading integrated monitoring and control software functions, the company added user-specific project management functions and the output of reports for hull inspection to make them different and competitive from other underwater drones.

Automated Measurement Method for Construction Errors of Reinforced Concrete Pile Foundation Using a Drones (드론을 활용한 철근콘크리트 말뚝기초 시공 오차 자동화 측정 방법)

  • Seong, Hyeonwoo;Kim, Jinho;Kang, HyunWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.45-53
    • /
    • 2022
  • The purpose of this study is to present a model for analyzing construction errors of reinforced concrete pile foundations using drones. First, a drone is used to obtain an aerial image of the construction site, and an orthomosaic image is generated based on those images. Then, the circular pile foundation is automatically recognized from the orthomosaic image by using the Hough transform circle detection method. Finally, the distance is calculated based on the the center point of the reinforced concrete pile foundation in the overlapped data. As a case study, the proposed concrete concrete pile foundation construction quality control model was applied to the real construction site in Incheon to evaluate the proposed model.

A Study on Land-cover and Sedimentary Environment Changes Before and After the 2020 Flood in the Seomjin River Chimsil Wetland (섬진강침실습지의 2020년 홍수 전·후 토지피복 및 퇴적환경 변화 연구)

  • Lee, Ye-Seul;Lim, Jeong-Cheol;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.15-30
    • /
    • 2021
  • This study analyzed the changes in land-cover and sedimentary environment before and after flooding through drone images and sediment analysis for the Seomjin River Chimsil Wetland. The results showed that the area of some land-covers such as sand bar, grass, and trees were continuously changed. The acidity level of the sediments in the Seomjin River Chimsil Wetland was weakened gradually by flooding and EC was also decreased. The levels of organic matter, effective phosphoric acid, and CEC, however, were fluctuating depending on branches, which seems to be the result of landization as new sedimentary environment was developed and vegetation was settled after the flood. Average mean size of river sediments was found to be fine sand, and it exhibited various particle size characteristics from granule to medium silt depending on the location. As the sedimentary environment changed due to the effects of floods and typhoons, the particles were granulated or grain refined depending on the position. In the Seomjin River Chimsil Wetland, there were factors that could interfere with geomorphic development and sedimentary environment, contamination sources in and around the wetland, and natural threat factors. Therefore, in this study, a conservation and management plan was proposed to remove these threat factors and to preserve the scarcity, naturalness, and dynamics of Seomjin River Chimsil Wetland.

Implementation of YOLO based Missing Person Search Al Application System (YOLO 기반 실종자 수색 AI 응용 시스템 구현)

  • Ha Yeon Km;Jong Hoon Kim;Se Hoon Jung;Chun Bo Sim
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.159-170
    • /
    • 2023
  • It takes a lot of time and manpower to search for the missing. As part of the solution, a missing person search AI system was implemented using a YOLO-based model. In order to train object detection models, the model was learned by collecting recognition images (road fixation) of drone mobile objects from AI-Hub. Additional mountainous terrain datasets were also collected to evaluate performance in training datasets and other environments. In order to optimize the missing person search AI system, performance evaluation based on model size and hyperparameters and additional performance evaluation for concerns about overfitting were conducted. As a result of performance evaluation, it was confirmed that the YOLOv5-L model showed excellent performance, and the performance of the model was further improved by applying data augmentation techniques. Since then, the web service has been applied with the YOLOv5-L model that applies data augmentation techniques to increase the efficiency of searching for missing people.

Study on Application Plan of Forest Spatial Informaion Based on Unmanned Aerial Vehicle to Improve Environmental Impact Assessment (환경영향평가 개선을 위한 무인항공기 기반의 산림공간정보 활용 방안 연구)

  • Sung, Hyun-Chan;Zhu, Yong-Yan;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.63-76
    • /
    • 2019
  • UAVs are unmanned, autonomous or remotely piloted aircraft. As UAVs become smaller, lighter and more economical, their applications continue to expand. Researches on UAVs in the field of remote sensing show development methods and purposes similar to those on satellite images, and they are widely used in studies such as 3D image composition and monitoring. In the field of environmental impact assessment(EIA), satellite information and data are mainly used. However, only low-resolution images covering long distances and large-scale data allowing for rough examination are being provided, so their uses are seriously limited. Therefore, in this paper, we construct spatial information of forest area by using unmanned aerial vehicle and seek efficient utilization and policy improvement in the field of environmental impact assessment. As a result, high-resolution images and data from UAVs can be used to identify the location status of SEIA, EIA, and small scale EIA project plans and to evaluate detailed environmental impact analysis. In addition, when provided together with infographics about Post-environmental impact investigation, it was confirmed that the possibility of periodic spatial information construction and evaluation can be used throughout the entire project contents and project post-process.In order to provide sophisticated infographics for the EIA, drone photography and GCP surveying methods were derived.The results of this study will be used as a basis for improving high-resolution monitoring and environmental impact assessment in the forest sector.

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images (고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Jeon, Min-Gi;Lee, Sang-Il;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Estimating the Stand Level Vegetation Structure Map Using Drone Optical Imageries and LiDAR Data based on an Artificial Neural Networks (ANNs) (인공신경망 기반 드론 광학영상 및 LiDAR 자료를 활용한 임분단위 식생층위구조 추정)

  • Cha, Sungeun;Jo, Hyun-Woo;Lim, Chul-Hee;Song, Cholho;Lee, Sle-Gee;Kim, Jiwon;Park, Chiyoung;Jeon, Seong-Woo;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.653-666
    • /
    • 2020
  • Understanding the vegetation structure is important to manage forest resources for sustainable forest development. With the recent development of technology, it is possible to apply new technologies such as drones and deep learning to forests and use it to estimate the vegetation structure. In this study, the vegetation structure of Gongju, Samchuk, and Seoguipo area was identified by fusion of drone-optical images and LiDAR data using Artificial Neural Networks(ANNs) with the accuracy of 92.62% (Kappa value: 0.59), 91.57% (Kappa value: 0.53), and 86.00% (Kappa value: 0.63), respectively. The vegetation structure analysis technology using deep learning is expected to increase the performance of the model as the amount of information in the optical and LiDAR increases. In the future, if the model is developed with a high-complexity that can reflect various characteristics of vegetation and sufficient sampling, it would be a material that can be used as a reference data to Korea's policies and regulations by constructing a country-level vegetation structure map.