• Title/Summary/Keyword: Drone Imaging

Search Result 34, Processing Time 0.021 seconds

Experimental Study of Drone Detection and Classification through FMCW ISAR and CW Micro-Doppler Analysis (고해상도 FMCW 레이더 영상 합성과 CW 신호 분석 실험을 통한 드론의 탐지 및 식별 연구)

  • Song, Kyoungmin;Moon, Minjung;Lee, Wookyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2018
  • There are increasing demands to provide early warning against intruding drones and cope with potential threats. Commercial anti-drone systems are mostly based on simple target detection by radar reflections. In real scenario, however, it becomes essential to obtain drone radar signatures so that hostile targets are recognized in advance. We present experimental test results that micro-Doppler radar signature delivers partial information on multi-rotor platforms and exhibits limited performance in drone recognition and classification. Afterward, we attempt to generate high resolution profile of flying drone targets. To this purpose, wide bands radar signals are employed to carry out inverse synthetic aperture radar(ISAR) imaging against moving drones. Following theoretical analysis, experimental field tests are carried out to acquire real target signals. Our preliminary tests demonstrate that high resolution ISAR imaging provides effective measures to detect and classify multiple drone targets in air.

Moving Target Detection based on Frame Subtraction and Morphological filter with Drone Imaging (프레임 감산과 형태학적 필터를 이용한 드론 영상의 이동표적의 검출)

  • Lee, Min-Hyuck;Yeom, SeokWon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.192-198
    • /
    • 2018
  • Recently, the use of drone has been increasing rapidly in many ways. A drone can capture remote objects efficiently so it is suitable for surveillance and security systems. This paper discusses three methods for detecting moving vehicles using a drone. We compare three target detection methods using a background frame, preceding frames, or moving average frames. They are subtracted from a current frame. After the frame subtraction, morphological filters are applied to increase the detection rate and reduce the false alarm rate. In addition, the false alarm region is removed based on the true size of targets. In the experiments, three moving vehicles were captured by a drone, and the detection rate and the false alarm rate were obtained by three different methods and the results are compared.

Development of the Program for Reconnaissance and Exploratory Drones based on Open Source (오픈 소스 기반의 정찰 및 탐색용 드론 프로그램 개발)

  • Chae, Bum-sug;Kim, Jung-hwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • With the recent increase in the development of military drones, they are adopted and used as the combat system of battalion level or higher. However, it is difficult to use drones that can be used in battles below the platoon level due to the current conditions for the formation of units in the Korean military. In this paper, therefore, we developed a program drones equipped with a thermal imaging camera and LiDAR sensor for reconnaissance and exploration that can be applied in battles below the platoon level. Using these drones, we studied the possibility and feasibility of drones for small-scale combats that can find hidden enemies, search for an appropriate detour through image processing and conduct reconnaissance and search for battlefields, hiding and cover-up through image processing. In addition to the purpose of using the proposed drone to search for an enemies lying in ambush in the battlefield, it can be used as a function to check the optimal movement path when a combat unit is moving, or as a function to check the optimal place for cover-up or hiding. In particular, it is possible to check another route other than the route recommended by the program because the features of the terrain can be checked from various viewpoints through 3D modeling. We verified the possiblity of flying by designing and assembling in a form of adding LiDAR and thermal imaging camera module to a drone assembled based on racing drone parts, which are open source hardware, and developed autonomous flight and search functions which can be used even by non-professional drone operators based on open source software, and then installed them to verify their feasibility.

Estimation of Drone Velocity with Sum of Absolute Difference between Multiple Frames (다중 프레임의 SAD를 이용한 드론 속도 측정)

  • Nam, Donho;Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.171-176
    • /
    • 2019
  • Drones are highly utilized because they can efficiently acquire long-distance videos. In drone operation, the speed, which is the magnitude of the velocity, can be set, but the moving direction cannot be set, so accurate information about the drone's movement should be estimated. In this paper, we estimate the velocity of the drone moving at a constant speed and direction. In order to estimate the drone's velocity, the displacement of the target frame to minimize the sum of absolute difference (SAD) of the reference frame and the target frame is obtained. The ground truth of the drone's velocity is calculated using the position of a certain matching point over all frames. In the experiments, a video was obtained from the drone moving at a constant speed at a height of 150 meters. The root mean squared error (RMSE) of the estimated velocities in x and y directions and the RMSE of the speed were obtained showing the reliability of the proposed method.

3D Library Platform Construction using Drone Images and its Application to Kangwha Dolmen (드론 촬영 영상을 활용한 3D 라이브러리 플랫폼 구축 및 강화지석묘에의 적용)

  • Kim, Kyoung-Ho;Kim, Min-Jung;Lee, Jeongjin
    • Cartoon and Animation Studies
    • /
    • s.48
    • /
    • pp.199-215
    • /
    • 2017
  • Recently, a drone is used for the general purpose application although the drone was builtfor the military purpose. A drone is actively used for the creation of contents, and an image acquisition. In this paper, we develop a 3D library module platform using 3D mesh model data, which is generated by a drone image and its point cloud. First, a lot of 2D image data are taken by a drone, and a point cloud data is generated from 2D drone images. A 3D mesh data is acquired from point cloud data. Then, we develop a service library platform using a transformed 3D data for multi-purpose uses. Our platform with 3D data can minimize the cost and time of contents creation for special effects during the production of a movie, drama, or documentary. Our platform can contribute the creation of experts for the digital contents production in the field of a realistic media, a special image, and exhibitions.

Analysis and Comparison of Rock Spectroscopic Information Using Drone-Based Hyperspectral Sensor

  • Lee, So-Jin;Jeong, Gyo-Cheol;Kim, Jong-Tae
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.479-492
    • /
    • 2021
  • We conducted a fundamental study on geological and rock detection via drone-based hyperspectral imaging on various types of small rock samples and interpreted the obtained information to compare and classify rocks. Further, we performed hyperspectral imaging on ten rocks, and compared the peak data value and reflectance of rocks. Results showed a difference in the reflectance and data value of the rocks, indicating that the rock colors and minerals vary or the reflectance is different owing to the luster of the surface. Among the rocks, limestone used for hyperspectral imaging is grayish white, inverted rock contains various sizes and colors in the dark red matrix, and granite comprises colorless minerals, such as white, black, gray, and colored minerals, resulting in a difference in reflectance. The reflectance of the visible ray range in ten rocks was 16.00~85.78%, in the near infrared ray range, the average reflectance was 23.94~86.43%, the lowest in basalt and highest in marble in both cases. This is because of the pores in basalt, which caused the difference in reflectance.

Machine learning based radar imaging algorithm for drone detection and classification (드론 탐지 및 분류를 위한 레이다 영상 기계학습 활용)

  • Moon, Min-Jung;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.619-627
    • /
    • 2021
  • Recent advance in low cost and light-weight drones has extended their application areas in both military and private sectors. Accordingly surveillance program against unfriendly drones has become an important issue. Drone detection and classification technique has long been emphasized in order to prevent attacks or accidents by commercial drones in urban areas. Most commercial drones have small sizes and low reflection and hence typical sensors that use acoustic, infrared, or radar signals exhibit limited performances. Recently, artificial intelligence algorithm has been actively exploited to enhance radar image identification performance. In this paper, we adopt machined learning algorithm for high resolution radar imaging in drone detection and classification applications. For this purpose, simulation is carried out against commercial drone models and compared with experimental data obtained through high resolution radar field test.

Applications of image analysis techniques for the drone photography in water resources engineering (무인항공 촬영 영상분석 기술의 수자원기술 분야 적용)

  • Kim, Hyung Ki;Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.463-467
    • /
    • 2020
  • The main feature of this study is to automatically synthesize square images by sending aerial photographs and images from unmanned aerial vehicles (drons). It may be applicable to the cloud server, and to apply analytical algorithms for the suitable purpose of image processing. Drone imaging analysis is a process that can be used in various fields such as finding contaminated area of green algae, monitoring forest fire, and managing crop cultivation.

Maritime Search And Rescue Drone Using Artificial Intelligence (인공지능을 이용한 해양구조 드론)

  • Shin, Gi-hwan;Kim, Jin-hong;Park, Han-gyu;Kang, Sun-kyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.688-689
    • /
    • 2022
  • This paper proposes the development of an AI drone equipped with motion detection and thermal imaging camera to quickly rescue people from drowning accidents. Currently, when a drowning accident occurs, a large number of manpower must be put in to find the person who needs it, such as conducting a search operation. The time required for this process is too long, and especially the night search is more difficult for a person to do directly. To solve this situation, we are going to use AI drones.

  • PDF

Calculation of Tree Height and Canopy Crown from Drone Images Using Segmentation

  • Lim, Ye Seul;La, Phu Hien;Park, Jong Soo;Lee, Mi Hee;Pyeon, Mu Wook;Kim, Jee-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.605-614
    • /
    • 2015
  • Drone imaging, which is more cost-effective and controllable compared to airborne LiDAR, requires a low-cost camera and is used for capturing color images. From the overlapped color images, we produced two high-resolution digital surface models over different test areas. After segmentation, we performed tree identification according to the method proposed by , and computed the tree height and the canopy crown size. Compared with the field measurements, the computed results for the tree height in test area 1 (coniferous trees) were found to be accurate, while the results in test area 2 (deciduous coniferous trees) were found to be underestimated. The RMSE of the tree height was 0.84 m, and the width of the canopy crown was 1.51 m in test area 1. Further, the RMSE of the tree height was 2.45 m, and the width of the canopy crown was 1.53 m in test area 2. The experiment results validated the use of drone images for the extraction of a tree structure.