• 제목/요약/키워드: Driver Safety Assist System

검색결과 19건 처리시간 0.025초

AEB의 V2V 안전성 평가 방법에 관한 연구 (A Study on the V2V Safety Evaluation Method of AEB)

  • 권병헌;이선봉
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.7-16
    • /
    • 2019
  • There are trying to reduce damage from automobile accident in many countries. In many automobile companies, there have been active study on development of ADAS (Advanced Driver Assistance Systems) for commercialization, in order to reduce damage from automobile accident. ADAS is the system providing convenience and safeness for drivers. Generally, ADAS is composed of ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). AEB of the ADAS, it is an autonomous emergency braking system and it senses potential collide and avoids or degrades it. Therefore AEB plays a significant role in reducing automobile accident rate. However, AEB safety evaluation method is not established not yet. For this reason, this study suggests safety evaluation scenarios with adding cut-in, sensor malfunctioning scenario that scenario domestic street conditions considered as well as original standard AEB scenario of Euro NCAP for establishment of safety evaluation method of AEB. And verifying validity of suggested scenario by comparing the calculated values of the theoretical formulas presented in the previous study with results of the actual vehicle test.

모형차를 이용한 YOLO 주행 보조 시스템 (YOLO Driving Assistance System Using Model Car)

  • 김재균;허훈;오정수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.671-674
    • /
    • 2018
  • 본 연구에서는 모형 자동차를 이용한 YOLO 운전 보조 시스템을 구현 하였다. YOLO는 최근에 잇슈가 되고 있는 딥 러닝을 사용하는 물체 감지 및 인식 알고리즘입니다. 이 시스템은 카메라를 통해 획득한 영상에 영상처리 기술을 적용하여 차선 이탈을 경고하고, YOLO를 이용하여 객체를 인식하며 객체 유형 및 차량 사이의 거리에 따라 다양한 기능을 수행한다. 기존 물체 검출 및 인식 알고리즘 보다 우수한 YOLO는 추가 장비 없이 주행 보조 시스템 성능을 향상시킨다. YOLO를 이용한 주행 보조 시스템은 적은 비용으로 운전자의 안전성을 확보할 수 있을 것이다.

  • PDF

국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구 (A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1)

  • 권병헌;이선봉
    • 자동차안전학회지
    • /
    • 제11권4호
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.

LKAS 시험평가의 시뮬레이션 모델링 기법에 관한 연구 (A Study on the Simulation Modeling Method of LKAS Test Evalution)

  • 배건환;이선봉
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.57-64
    • /
    • 2020
  • 첨단 운전자 보조시스템(ADAS, Advanced Driver Assist System)의 주요 기술에는 적응형 순항 제어(ACC, Advanced Cruise Control), 주행 조향보조 시스템(LKAS, Lane Keeping Assist System), 자동 긴급제동 시스템(AEB, Autonomous Emergency Braking) 등이 있다. ADAS 중 LKAS는 카메라(camera)와 적외선 센서(sensor)를 사용하여 운전자가 의도하지 않은 차선이탈이 발생하였을 때, 조향 보조장치를 제어하여 주행 차선으로 복귀하는 시스템이다. 이러한 시스템의 안전성 평가와 검증을 위해 실차시험을 진행한다. 그러나 LKAS 동작 후 임의의 추가 조향각이 인가될 경우에 대한 연구는 미흡하다. 본 논문에서는 선행연구에서 제안한 시나리오에 대해 Prescan을 이용하여 추가 조향각 인가 모델링(modeling)기법을 개발하고 시뮬레이션(simulation) 하고, 실차시험을 통해 취득한 데이터(data)와의 비교분석으로 모델링 기법의 타당성을 검증하였다. 앞바퀴부터 차선까지 최대 거리오차는 0.56 m이며, 시뮬레이션과 실차시험의 차선 복귀 속도의 차이로 인해 발생하였다. 시뮬레이션과 달리 실차시험은 주행 차선으로 복귀 속도가 느려 이탈하는 차의 횡방향 변화가 상대적으로 적어 시뮬레이션과 오차가 발생한 것으로 판단된다. 시뮬레이션과 실차시험 값의 비교분석 결과 차선복귀 속도 차이는 있지만 앞바퀴부터 차선까지 거리가 약 0.5m로 수렴하는 경향성을 나타내어 신뢰성을 확인할 수 있었다.

차량동특성 및 도로경사도 추정에 관한 연구 (A Study on the Vehicle Dynamics and Road Slope Estimation)

  • 김문식
    • 한국산업융합학회 논문집
    • /
    • 제22권5호
    • /
    • pp.575-582
    • /
    • 2019
  • Advanced driving assist system can support safety of driver and passengers which may require vehicle dynamics states as well as road geometry. It is essential to have in real-time estimation of related variables and parameters. Among the road geometry parameters, road slope angle which can not be measured is essential parameter in pose estimation, adaptive cruise control and others on sag road. In this paper, Kalman filter based method for the estimation of the vehicle dynamics and road slope angle using a nonlinear vehicle model is proposed. It uses a combination of Kalman filter as Cascade Extended Kalman Filter. CEKF uses measured vehicle states such as yaw rate, longitudinal/lateral acceleration and velocity. Unknown vehicle parameters such as center of gravity and inertia are obtained by 2 D.O.F lateral model and experimentally. Simulation and Experimental tests conducted with commercialized vehicle dynamics model and real-car.

듀얼카메라를 활용한 ACC 안전성 평가 방법에 관한 연구 (A Study on the ACC Safety Evaluation Method Using Dual Cameras)

  • 김봉주;이선봉
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.57-69
    • /
    • 2022
  • Recently, as interest in self-driving cars has increased worldwide, research and development on the Advanced Driver Assist System is actively underway. Among them, the purpose of Adaptive Cruise Control (ACC) is to minimize the driver's driving fatigue through the control of the vehicle's longitudinal speed and relative distance. In this study, for the research of the ACC test in the real environment, the real-road test was conducted based on domestic-road test scenario proposed in preceding study, considering ISO 15622 test method. In this case, the distance measurement method using the dual camera was verified by comparing and analyzing the result of using the dual camera and the result of using the measurement equipment. As a result of the comparison, two results could be derived. First, the relative distance after stabilizing the ACC was compared. As a result of the comparison, it was found that the minimum error rate was 0.251% in the first test of scenario 8 and the maximum error rate was 4.202% in the third test of scenario 9. Second, the result of the same time was compared. As a result of the comparison, it was found that the minimum error rate was 0.000% in the second test of scenario 10 and the maximum error rate was 9.945% in the second test of scenario 1. However, the average error rate for all scenarios was within 3%. It was determined that the representative cause of the maximum error occurred in the dual camera installed in the test vehicle. There were problems such as shaking caused by road surface vibration and air resistance during driving, changes in ambient brightness, and the process of focusing the video. Accordingly, it was determined that the result of calculating the distance to the preceding vehicle in the image where the problem occurred was incorrect. In the development stage of ADAS such as ACC, it is judged that only dual cameras can reduce the cost burden according to the above derivation of test results.

자동차보험 과실기준 기반 자동차사고유형 체계화에 관한 연구 (A Study on the Classification of the Car Accidents Types based on the Negligence Standards of Auto Insurance)

  • 박요한;박원필;김승기
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.53-59
    • /
    • 2021
  • According to the Korean Traffic Accident Analysis System (TAAS), more than 200,000 traffic accidents occur every year. Also, the statistics including auto insurance companies data show 1.3 million traffic accidents. In the case of TAAS, the types of traffic accidents are simply divided into four; frontal collision, side collision, rear collision, and rollover. However, more detailed information is needed to assess for advanced driver assist systems at intersections. For example, directional information is needed, such as whether the vehicle in the car accident way in a straight or a left turn, etc. This study intends to redefine the type of accident with the more clear driving direction and path by referring to the Negligence standards used in automobile insurance accidents. The standards largely divide five categories of car-to-car/motorcycle /pedestrian/cyclist, and highway, and the each category is classified into dozens of types by status of the traffic signal, conflict situations. In order to present more various accident types for auto insurance accidents, the standards are reclassified driving direction and path of vehicles from crash situations. In results, the car-to-car accidents are classified into 33 accident types, car-to-pedestrian accidents have 19 accident types, car-to-motorcycle accidents have 38 accident types, and car-to-cyclist accidents are derived into 26 types.

인터넷을 이용한 교통상황예보 (Forecasting of Traffic Situation using Internet)

  • 홍유식;최명복
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.300-309
    • /
    • 2003
  • 차량항법장치는 1981년 일본 혼다자동차 관성항법장치에서 개발되었다. 요즈음에는 GPS 및 GIS를 기반으로 운전자에게 최단 경로탐색 및 예상도착시간을 인터넷 및 휴대폰으로 검색할 수 있다. 그러나 아무리 좋은 자동항법장치도 평균 차량 속도가 5~15km일 때에는 최단경로를 상실한다. 그러므로, 승용차 대기시간과 평균 차량 속도를 개선하기 위해서 다른 교차로 길이 및 교차로 차선수일 때에도 퍼지 적응규칙을 이용해서 평균주행속도를 향상한 알고리즘을 제안한다. 뿐만 아니라, 본 논문에서는 인터넷을 이용해서 위험한 도로 및 공사중인 도로에서도 안전도를 고려한 최적경로 및 현재의 교통상황을 예보하는 기능을 제공할 수 있도록 하였다.

구급차 내부 디자인 개선에 관한 연구 (A study on improving the interior design of ambulance)

  • 신동민;박시은;박신혜
    • 한국응급구조학회지
    • /
    • 제17권3호
    • /
    • pp.9-20
    • /
    • 2013
  • Purpose: This research project addressed the need to designing more safe and efficient interior of the future ambulance in Korea. Methods: The study sample contained 760 paramedics in 4 districts. Data was collected by using a revised and complemented questionnaire based on literature review. Results: In relation to the efficacy and safety of work, answers related to storage closet showed to be the highest, and the most difficult part of paramedic work in an ambulance was lurching. CPR is the most frequently used emergency care inside an ambulance, but 66% of the paramedics responded that accurate CPR is not possible during vehicle transfer. Safety belts are not worn for 82.8% of the time, because of discomfort (51.3%). 13.8% of the paramedics responded that stretchers are unstable, 29.5% had an experience of having patients fall off the stretcher inside an ambulance. There were comments on installing equipments to prevent noise, and assist communication. Conclusion: The suggested practical layout contains five main modifications 1. Developing specially designed belt is needed for paramedic safety & efficient work. 2. The seats are molded to be ergonomically friendly. 3. Equipments to secure the body and safety devices for CPR are needed. 4. System improvement for communication between the driver seat and paramedics is needed. 5. The stretchers are molded to be maximize efficiency and minimize injury.