• 제목/요약/키워드: Driven Nozzle

Search Result 81, Processing Time 0.024 seconds

Fatigue Test of MEMS Device: a Monolithic Inkjet Print

  • Park, Jun-Hyub;Oh, Yong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.798-807
    • /
    • 2004
  • A testing system was developed to improve the reliability of printhead and several printheads were tested. We developed a thermally driven monolithic inkjet printhead comprising dome-shaped ink chambers, thin film nozzle guides, and omega-shaped heaters integrated on the top surface of each chamber. To perform a fatigue test of an inkjet printhead, the testing system automatically detects a heating failure using a Wheatstone bridge circuit. Various models were designed and tested to develop a more reliable printhead. Two design parameters of the width of reinforcing layer and heater were investigated in the test. Specially., the reinforcing layer was introduced to improve the fatigue life of printhead. The life-span of heater with a reinforcing layer was longer than that without a reinforcing layer. The wider the heater was, the longer the life of printhead was.

Structural Analysis for Gear Column of Large Bore Diesel Engine (선박 추진용 대형 디젤엔진 기어컬럼의 구조해석)

  • Lee, Jong-Hwan;Nam, Dae-Ho;Son, Jung-Ho;Bae, Jong-Gug
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.448-452
    • /
    • 2008
  • 2-stroke marine diesel engine has generally one exhaust valve and three fuel injection nozzle which are key component for engine's performance and combustion. Fuel injection and exhaust valve driving system are driven by rotating of camshaft. Rotation of crank shaft drives the cam shaft through gear train that is composed of $3{\sim}4$ gear wheels. Gear column supporting the gear wheel has to bear against the dynamics forces by engine running as well as gearing forces. In this paper, structural analysis for engine structure and fatigue strength assessment of welded joint is shown. Repeatedly full cyclic simulation during one cycle is performed to investigate the structural behavior of engine. Fatigue analysis is carried out based on IIW using submodeling technique to obtain more detailed stress distribution.

  • PDF

Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows (예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법)

  • Ko Hyun;Yoon Woong-Sup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF

Thermal Flow Characteristics Driven by Arc Plasmas in a Thermal Puffer Type GCB (열파퍼식 가스차단기에서 발생하는 아크 플라즈마에 의한 열유동 특성)

  • Lee, Jong-Chul;Kim, Youn J.
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.527-532
    • /
    • 2005
  • During the last ten years the new interruption techniques, which use the arc energy itself to increase the pressure inside a chamber by the PTFE nozzle ablation, have displaced the puffer circuit breakers due to reduced driving forces and better maintainability. In this paper, we have investigated the thermal flow characteristics inside a thermal puffer type gas circuit breaker by solving the Wavier-Stokes equations coupled with Maxwell's equations for considering all instabilities effects such as turbulence and Lorentz forces by transient arc plasmas. These relative inexpensive computer simulations might help the engineer research and design the new interrupter in order to downscale and uprating the GIS integral.

Performance Analysis of an Industrial Inkjet Printing Head Using the 1D Lumped Model

  • Sim, Won-Chul;Park, Sung-Jun;Joung, Jae-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.50-53
    • /
    • 2008
  • A design approach using a one-dimensional (1D) lumped model was studied and applied to an industrial inkjet printing head design for micro patterning on printed circuit boards. For an accurate analysis, a three-dimensional piezoelectric-driven actuator model was analyzed and its jetting characteristics were applied to 1Danalysis model. The performance of the 1D lumped model was verified by comparing measured and simulated results. The developed 1D model helped to optimize the design and configuration of the inkjet head and could be implemented in the design of multi-nozzle inkjet printing heads to improve the jetting frequency and minimize crosstalk.

FLOW AND TEMPERATURE ANALYSIS WITHIN AUTOMOBILE CABIN BY DISCHARGED HOT AIR FROM DEFROST NOZZLE

  • Park, W.G.;Park, M.S.;Jang, K.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • As an automobile tends to be high grade, the needs for more luxurious interior and comfortable HVAC system are emerged. The defrosting ability is another major factor of the performances of HVAC system. The present work is to simulate the flow and the temperature field of cabin interior during the defrost mode. The three-dimensional incompressible Navier-Stokes equations and energy equation were solved on the multi blocked grid system by the iterative time marching method and AF scheme, respectively. The present computations were validated by the comparison of the temperature field of a driven cavity and velocity field of 1/5 model scale of an automobile. Generally good agreements were obtained. By the present computation, the complicated features of flow and temperature within the automotive cabin interior could be well understood.

Waterjet Propulsion Model Experiment for Catamaran Ship (쌍동선의 워터제트 추진 모형시험)

  • Choi, G.I.;Min, K.S.;Ann, Y.W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • A screw propeller is usually accepted as a propulsor of many kinds of ships. However, for high speed vessels, screw propeller has large cavitation area on the blades so propeller efficiency is decreased and erosion can be happened. To avoid this problem, supercavitating propeller and waterjet are generally used for high speed vessels. In this paper, we introduced the self-propulsion test procedure which has been developed for high speed vessels in Hyundai Maritime Research Institute. The model ship used in experiment represents catamaran about 5.3 m in length. To minimize the experimental errors, two impellers were driven by a single motor. Thrust was calculated by converting the measured pressure to flow rates at the nozzle exit. The test procedure is composed of resistance test, self propulsion test and analysis. In order to measure the pressure, pressure tabs were installed around the nozzle exit and connected to the pressure sensor by vinyl tube.

  • PDF

MICRO INJECTOR BASED ON DIGITAL DRIVE AND CONTROL FOR BIOMEDICAL ENGINEERING

  • Hou, Liya;Zhang, Weiyi;Mu, Lili;Zhu, Li
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2349-2351
    • /
    • 2003
  • This paper reports a novel microfluidic system, by which microfluidic delivery, transport and control can be digitally realized in femtoliter scale. Microelectronic grade $N_2$ from a pressurized canister was passed through HPLC tubing into a micro injector. The micro injector was driven and controlled digitally by the control system that can apply various control parameters such as pulse frequencies. A front-end of micro nozzle was inserted the dyed oil to collect droplets injected. The diameter of a droplet was measured by a microscope and a CCD camera, and then its volume can be calculated on the assumption that the droplet is spherical. The micro nozzles were simply pulled in glass capillary tubes by the micro puller self-made, and the geometry parameters of the micro nozzles can be adjusted easily. Experiments have successfully been carried out, and the results demonstrated that the proposed digital micro injector possesses three significant advantages : precise ultra-small liquid volume in femtoliter scale, digital microfluidic control and micro devices fabricated by simple glass process, not based on IC process.

  • PDF

A Study on Bubble Behavior Generated by an Air-driven Ejector for ABB (Air Bubble Barrier) (I): Development of Image Processing Method and Statistical Analysis (공기구동 이젝터를 이용한 ABB (Air Bubble Barrier)의 기포거동 특성 연구 (I): 영상처리 및 통계적분석방법 개발)

  • Seo, Hyunduk;Aliyu, Aliyu Musa;Kim, Minkyun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.48-58
    • /
    • 2017
  • To analyze bubbles generated by an ABB (Air Bubble Barrier), we developed image processing procedure and statistical analysis method. Air was discharged from 5 mm nozzle as swarm form at the bottom of 1 m3 water tank. Flow rates of discharged air are ranged from 2 L/min to 20 L/min and these are corresponding to Reynolds number of 1766-17663. Rise velocity of bubble is extracted by using image process pretending intrusive method. Mean equivalent velocity was calculated using void fraction weighting factor. Bubble diameter is obtained and compared with correlations in the literature. Also, we present a correlation according to the result of this study. Mean velocity and mean diameter of bubbles increase with increasing gas Reynolds number. But these parameters show an asymptotic trend when they approach to high Reynolds number.

Numerical Study on Bubble Growth and Droplet Ejection in a Bubble Inkjet Printer (버블 잉크젯에서의 기포성장 및 액적분사에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1107-1116
    • /
    • 2006
  • The droplet ejection process driven by an evaporating bubble in a thermal inkjet printhead is investigated by numerically solving the conservation equations for mass, momentum and energy. The phase interfaces are tracked by a level set method which is modified to include the effect of phase change at the interface and extended for multiphase flows with irregular solid boundaries. The compressibility effect of a bubble is also included in the analysis to appropriately describe the bubble expansion behaviour associated with the high pressure caused by bubble nucleation. The whole process of bubble growth and collapse as well as droplet ejection during thermal inkjet printing is simulated without employing a simplified semi-empirical bubble growth model. Based on the numerical results, the jet breaking and droplet formation behaviour is observed to depend strongly on the bubble growth and collapse pattern. Also, the effects of liquid viscosity, surface tension and nozzle geometry are quantified from the calculated bubble growth rate and ink droplet ejection distance.