• 제목/요약/키워드: Drinking water distribution system

검색결과 84건 처리시간 0.033초

Variations of Disinfection By-products in a Chlorinated Drinking Water Distribution System

  • Lee, Soo-Hyung;Park, Jeong-Kun;Lee, Hyung-Jun;Kim, He-Kap
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권2호
    • /
    • pp.71-78
    • /
    • 2000
  • The chlorination of municipal drinking water supplies leads to the formation of so-called disinfection by-products(DBPs), many of which have been reported to cause harmful health effects based on animal studies. This study was conducted: 1) to observe seasonal changes in the major DBPs at four sampling sites on a drinking water distribution system located in Chunchon, Kangwon Do; and 2) to examine the effects of major water quality parameters on the formation of DBPs. During the field sampling, the water temperature, pH, and total and free chlorine residuals were all measured. The water samples were then analyzed for total organic carbon(TOC) and eight disinfection by-products in the laboratory. Chloroform, dichloroacetic acid, and trichloroacetic acid were the major constituents of the measured DBPs. The concentrations of the total DBPs were highest in fall, particularly in October, and lowest in summer. The concentrations of the total DBPs increased with increasing TOC concentrations. Multiple regression analyses showed that the concentrations of chloroform, bromodichloromethane, and chloral hydrate were linearly correlated with the pH. Other water parameters were not included in the regression equations. Accordingly, these results suggest that TOC and pH are both important factors in the formation of DBPs.

  • PDF

Application of Management Reliability Index for Water Distribution System Assessment

  • Choi, Taeho;Lee, Sewan;Kim, Dooil;Kim, Mincheol;Koo, Jayong
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.117-122
    • /
    • 2014
  • Indexes of safety, restoration, damage impact, and management reliability were developed to assess reliability of drinking water distribution networks (DWDNs) management. The developed indexes were applied to evaluate the reliability of the pipeline management stage during unexpected mechanical and hydraulic accidents of components. The results were used to support the decision-making process in effective management and maintenance by enhancing the administrator's system understanding and by helping to create appropriate maintenance and management policies. The results of this study indicated that application of a management reliability index to assess DWDNs reliability may help create a more effective plan for establishing DWDNs management and maintenance.

Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System

  • Reuben, Rine Christopher;Roy, Pravas Chandra;Sarkar, Shovon Lal;Ha, Sang-Do;Jahid, Iqbal Kabir
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.473-486
    • /
    • 2019
  • In the aquatic environment, microorganisms are predominantly organized as biofilms. Biofilms are formed by the aggregation of microbial cells and are surrounded by a matrix of extracellular polymeric substances (EPS) secreted by the microbial cells. Biofilms are attached to various surfaces, such as the living tissues, indwelling medical devices, and piping of the industrial potable water system. Biofilms formed from a single species has been extensively studied. However, there is an increased research focus on multispecies biofilms in recent years. It is important to assess the microbial mechanisms underlying the regulation of multispecies biofilm formation to determine the drinking water microbial composition. These mechanisms contribute to the predominance of the best-adapted species in an aquatic environment. This review focuses on the interactions in the multispecies biofilms, such as coaggregation, co-metabolism, cross-species protection, jamming of quorum sensing, lateral gene transfer, synergism, and antagonism. Further, this review explores the dynamics and the factors favoring biofilm formation and pathogen transmission within the drinking water distribution systems. The understanding of the physiology and biodiversity of microbial species in the biofilm may aid in the development of novel biofilm control and drinking water disinfection processes.

소독부산물 최소화를 위한 운영조건 연구 (Operating Conditions for Minimization of DBPs (Disinfection by-Products) in Drinking Water Supply System)

  • 신형순;최필권;김종수;최일우;김상훈;김태현;이경희;이수문;장은아;정연훈;김주열
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.330-337
    • /
    • 2005
  • This study was carried out to propose the managemental improvement of the purification plants and the distribution facilities which can minimize the formation of disinfection by-products in drinking water distribution system. The disinfection by-products were highly created in the water treatment plant that the organic matters were high and the chlorine dosage was excessive. The concentration of DSPs was shown the highest value in August and the lowest value in December, because of temperature and pre-chlorine dosage effect. From the result of tracer test, the travel time from the treatment plant to the end of pipeline was around 3-4 days in summer, 5-6 days in winter, respectively, and the DSPs concentration of the reservoir(end of pipe) was 2-3 times higher than that of the beginning point. The improvement of the chlorination process and structural reformation of distribution facility was demanded to minimize the DSPs increase from purification plant to the end of pipe.

단방향 플러싱에 의한 입자성 물질의 제거에 관한 연구 (A study on the removal of particulate matters using unidirectional flushing)

  • 김두일;천수빈;현인환
    • 상하수도학회지
    • /
    • 제29권3호
    • /
    • pp.371-380
    • /
    • 2015
  • Particulate matters in a water distribution system are main causes of turbidity and discoloration of tap water. They could be removed by conventional or uni-directional flushing in a water distribution system. The behaviors and required flow velocity of particles are not well known for their flushing. A model water main and hydrant were made from transparent acrylic pipe of 30mm and 16mm in diameter, respectively. We analyzed the effect of flushing velocity, particle density, and particle diameter. We found that the existence of break-though velocities at which particles begin to be removed, and which are affected by their physical properties. The removal efficiencies seemed to be influenced by resuspension capabilities related to their upward movement from the bottom. Heavy particles like scale were hard to remove through upflow hydrant because the falling velocity, calculated using Stokes' law, was higher. Particle removal efficiencies of upward hydrant and downward drain showed minor differences. Additionally, the length between hydrant and control valve affected flushing efficiency because the particulate matters were trapped in this space by inertia and recirculating flow.

Influence of Pipe Materials and VBNC Cells on Culturable Bacteria in a Chlorinated Drinking Water Model System

  • Lee, Dong-Geun;Park, Seong-Joo;Kim, Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1558-1562
    • /
    • 2007
  • To elucidate the influence of pipe materials on the VBNC (viable but nonculturable) state and bacterial numbers in drinking water, biofilm and effluent from stainless steel, galvanized iron, and polyvinyl chloride pipe wafers were analyzed. Although no HPC (heterotrophic plate count) was detected in the chlorinated influent of the model system, a DVC (direct viable count) still existed in the range between 3- and 4-log cells/ml. Significantly high numbers of HPC and DVC were found both in biofilm and in the effluent of the model system. The pipe material, exposure time, and the season were all relevant to the concentrations of VBNC and HPC bacteria detected. These findings indicate the importance of determining the number of VBNC cells and the type of pipe materials to estimate the HPC concentration in water distribution systems and thus the need of determining a DVC in evaluating disinfection efficiency.

Occurrence of Disinfection By-Products and Distribution in Drinking Water

  • In, Chi-Kyung;Lee, Jung-Ho;Lee, In-Sook
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 Proceedings of KSEH.Minamata Forum
    • /
    • pp.103-114
    • /
    • 2005
  • Chlorine disinfection has been used in drinking water supply to disinfect the water-borne microbial disease which may cause to serious human disease. As Chlorination is still the least costly, relatively easy to use, chlorination is the primary means to disinfect portable water supplies and control bacterial growth in the distribution system. However, chlorine also reacts with natural organic matter (NOM), which presents in nearly all water sources, and then produces disinfection by-product (DBps), which may have adverse health effects. Although the existent DBPs have been reported in drinking water supplies, it is not feasible to predict the levels of the various DBPs due to the complex chemistry reaction involved. The objectives of this study were to investigate seasonal variation of DBPs formation and difference of DBPs concentration in the plant to tap water. The average concentration of THMs was 20.04 ${\mu}g/{\ell}$, HAAs 8-15 ${\mu}g/{\ell}$, HANs 2-4.5 ${\mu}g/{\ell}$ respectively. Distant variation of DBPs formation is that THMs concentration increase by 17% at 2 km point from the plant and by 28% at 7 km and HAAs, HANs also increase each by 16%, 32%, at 2 km from the plant and 35%, 56%, at 7 km. DBPs increase in water supply pipe continually. The seasonal occurrence of DBPs is that in May and August DBPs concentration is very high then in March, in May DBPs concentration is highest. The temperature is main factor of DBPs formation, precursor also. Precursor which was accumulated for winter flowed into the raw water by flooding in spring and summer and produced DBPs. Therefore for the supply of secure drinking water, it is required to protect precursor of flowing into raw water and to add to BCAA and DBAA to drinking water standards.

  • PDF

클로라민의 소독특성에 관한 연구 (A Study on the Characteristics of Chloramination as an Alternative Disinfectant in Drinking Water)

  • 김평청;우달식;남상호
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.77-82
    • /
    • 1999
  • This study was carried to investigate the characteristics of chloramination as a disinfection in drinking water distribution system. The raw water comes from midstream of Han river. In the range of pH 6~8, preformed chloramine of $Cl_2/NH_3-N$ ratio 5:1 had the HPC inactivation of more than 99% with lower pH and shorter contact time and available chloramine residual was decreased a little. In the chloramines of $Cl_2/NH_3-N$ ratio 3:1~5:1, the higher $Cl_2/NH_3-N$ ratio, the much inactivation of HPC was increased, but as contact time was longer, HPC inactivation of $Cl_2/NH_3-N$ ratio 3:1~5:1 were equaled. Bactericidal activity of three chlorine and postammoniation was influenced by free available chlorine completely and that of preammoniation was as follows : free chlorine ${\fallingdotseq}$ postammoniation>preammoniation>preformed chloramine.

  • PDF

수돗물의 앙금발생규명 및 저감기술방안 (Study on the alternatives to trace the origin and to diminish the sediments of drinking water)

  • 김갑수;임병진;권은미
    • 환경위생공학
    • /
    • 제9권1호
    • /
    • pp.17-28
    • /
    • 1994
  • There are many possibilities that may lead to low quality of drinking water Recently, some unknown deposits in tap water raised a lot of public concern regarding the safety of drinking water in Seoul. We analyzed the quality of tap water from several areas of Seoul, including the area where public complaints about tap water were high. The results shows that the quality of tap water in Seoul was good, well below the environmental standards. Only the tap water from the area with high public complaints showed turbidity higher than that of other area. Also, result shows that component of deposit in tap water was Al, Fe, Mn, and Zn. Based on the research result we propose several measures that might help to reduce the amount of deposit in tap water as follows : 1 Using coagulant aid when coagulating or adjusting pH when filtering. 2. Replacing old water pipeline with new corrosive- resistant one. 3. Increasing water treatment efficiency by enhancing water treatment system such as automation of water treatment system adjusting production capacity, and improving operational condition of filler basin. 4. Chlorine disinfection at the distribution reservoir would help maintaining the same pH level and chlorine concentration throughout the water pipeline and reduce corrosion of pipe.

  • PDF

수돗물 수질에 따른 옥내급수관 부식에 미치는 영향분석 (The Corrosion Effect of the Water Pipelines in Buildings according to Drinking Water Quality)

  • 유순주;박수정;안경희;김현구;김창수;정일록;박영복
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.701-708
    • /
    • 2008
  • As a countermeasure for reduction of corrosion in the delivery and distribution pipes used for tap water, materials for the pipelines in-houses and the effect of water quality on corrosivity of water pipelines were investigated in the distribution system of Han river. As the corrosion index at 6 water purification facilities of Han river, average Langelier Saturation Index (LI) of raw and finished water were -1.0 and -1.4 respectively and average Larson Index (LR) were 9.5 and 9.9, respectively. And also corrosion potential showed corrosivity in finished water (-431~-462 mV) as well as raw water (-426~-447 mV). This results indicate that tap water quality of han river have corrosivity. To understand the corrosivity effect in pipe material used for premise distribution system, water quality of stagnant tap water and tap water were analyzed and the differences between them were calculated. The difference concentration of iron, copper and zinc were $12.9{\mu}g/L$, $31.0{\mu}g/L$ and $45.0{\mu}g/L$ respectively in galvanized steel pipe for use more than 15 years and showed highest concentration. As a result, the control to corrosivity in the water pipelines, corrosivity control treatment in the water purification system can be applied. In advance it is necessary to monitor corrosivity of water quality using corrosive index because corrosivity may differ from the seasonal and regional characteristics and water chemicals dosage. For the future the guideline for corrosion index have to be established.