Browse > Article

Influence of Pipe Materials and VBNC Cells on Culturable Bacteria in a Chlorinated Drinking Water Model System  

Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University)
Park, Seong-Joo (Department of Microbiology and Biotechnology, Daejeon University)
Kim, Sang-Jong (School of Biological Sciences, College of Natural Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1558-1562 More about this Journal
Abstract
To elucidate the influence of pipe materials on the VBNC (viable but nonculturable) state and bacterial numbers in drinking water, biofilm and effluent from stainless steel, galvanized iron, and polyvinyl chloride pipe wafers were analyzed. Although no HPC (heterotrophic plate count) was detected in the chlorinated influent of the model system, a DVC (direct viable count) still existed in the range between 3- and 4-log cells/ml. Significantly high numbers of HPC and DVC were found both in biofilm and in the effluent of the model system. The pipe material, exposure time, and the season were all relevant to the concentrations of VBNC and HPC bacteria detected. These findings indicate the importance of determining the number of VBNC cells and the type of pipe materials to estimate the HPC concentration in water distribution systems and thus the need of determining a DVC in evaluating disinfection efficiency.
Keywords
Viable but nonculturable (VBNC); direct viable count (DVC); drinking water; biofilm; pipe material;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Boe-Hansen, R., H.-J. Albrechtsen, E. Arvin, and C. Jorgensen. 2002. Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res. 36: 4477-4486   DOI   ScienceOn
2 Butterfield, P. W., A. K. Camper, B. D. Ellis, and W. L. Jones. 2002. Chlorination of model drinking water biofilm: Implications for growth and organic carbon removal. Water Res. 36: 4391-4405   DOI   ScienceOn
3 Chang, Y. C., M. L. Puil, J. Biggerstaff, A. A. Randall, A. Schulte, and J. S. Taylor. 2003. Direct estimation of biofilm density on different pipe material coupons using a specific DNA-probe. Mol. Cell Probe 17: 237-243   DOI   ScienceOn
4 Ellis, B. D., P. Butterfield, W. L. Jones, G. A. McFeters, and A. K. Camper. 2000. Effects of carbon source, carbon concentration, and chlorination on growth related parameters of heterotrophic biofilm bacteria. Microb. Ecol. 38: 330-347   DOI   ScienceOn
5 Lee, D.-G., S.-J. Kim, and S. J. Park. 2006. Effect of reservoirs on microbiological water qualities in a drinking water distribution system. J. Microbiol. Biotechnol. 16: 1060-1067   과학기술학회마을
6 Wasche, S., H. Horn, and D. C. Hempel. 2002. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res. 36: 4775-4784   DOI   ScienceOn
7 Wong, H.-C., P. Wang, S.-Y. Chen, and S.-W. Chiu. 2004. Resuscitation of viable but non-culturable Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol. Lett. 233: 269-275   DOI   ScienceOn
8 Schwartz, T., S. Hoffmann, and U. Obst. 2003. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J. Appl. Microbiol. 95: 591-601   DOI   ScienceOn
9 Baffone, W., B. Citterio, E. Vittoria, A. Casaroli, R. Campana, L. Falzano, and G. Donelli. 2003. Retention of virulence in viable but non-culturable halophilic Vibrio spp. Int. J. Food Microbiol. 89: 31-39   DOI   ScienceOn
10 Zacheus, O. M., E. K. Iivanainen, T. K. Nissinen, M. J. Lehtola, and P. J. Martikainen. 2000. Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34: 63-70   DOI   ScienceOn
11 Thomas, V., T. Bouchez, V. Nicolas, S. Robert, J. F. Loret, and Y. Levi. 2004. Amoebae in domestic water systems: Resistance to disinfection treatments and implication in Legionella persistence. J. Appl. Microbiol. 97: 950-963   DOI   ScienceOn
12 American Public Health Association. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. Washington, DC, U.S.A
13 Piriou P., S. Dukan, and L. Kiene. 1998. Modelling bacteriological water quality in drinking water distribution systems. Water Sci. Technol. 38: 299-307
14 Alonso, J. L., A. Soriano, O. Carbajo, I. Amoros, and H. Garelick. 1999. Comparison and recovery of Escherichia coli and thermotolerant coliforms in water with a chromogenic medium incubated at 41 and$44.5^{\circ}C$. Appl. Environ. Microbiol. 65: 3746-3749
15 U.S. Environmental Protection Agency. 1989. Guidance manual for compliance with the filtration and disinfection requirements for public water systems using surface water sources. Office of Water, U.S. Environmental Protection Agency, Washington, D.C
16 Gauthier, V., S. Redercher, and J.-C. Block. 1999. Chlorine inactivation of Sphingomonas cells attached to goethite particles in drinking water. Appl. Environ. Microbiol. 65: 355-357
17 Park, S. R., W. G. Mackay, and D. C. Reid. 2001. Helicobacter sp. recovered from drinking water biofilm sampled from a water distribution system. Water Res. 35: 1624-1626   DOI   ScienceOn
18 Chang, Y. C. and K. Jung. 2004. Effect of distribution system materials and water quality on heterotrophic plate count and biofilm proliferation. J. Microbiol. Biotechnol. 14: 1114-1119
19 Lee, D.-G., J.-H, Lee, and S.-J. Kim. 2005. Diversity and dynamics of bacterial species in a biofilm at the end of the Seoul water distribution system. World J. Microb. Biot. 21: 155-162   DOI   ScienceOn
20 Weichart, D., J. D. Oliver, and S. Kjelleberg. 1992. Lowtemperature induced nonculturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100: 205-210   DOI
21 Lehtola, M. J., I. T. Miettinen, T. Lampola, A. Hirvonen, T. Vartiainen, and P. J. Martikainen. 2005. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 39: 1962-1971   DOI   ScienceOn
22 Block, J. C., K. Haudidier, J. L. Paquin, J. Miazga, and Y. Levi. 1993. Biofilm accumulation in drinking water distribution systems. Biofouling 6: 333-343   DOI   ScienceOn
23 Lee, D.-G. and S.-J. Kim. 2003. Bacterial species in biofilm cultivated from the end of the Seoul water distribution system. J. Appl. Microbiol. 95: 317-324   DOI   ScienceOn
24 Norton, C. D. and M. W. LeChevallier. 2000. A pilot study of bacteriological population changes through potable water treatment and distribution. Appl. Environ. Microbiol. 66: 268-276   DOI   ScienceOn
25 Yoon, T. H. and Y. J. Lee. 2004. Bacterial regrowth in water distribution systems and its relationship to the water quality: Case study of two distribution systems in Korea. J. Microbiol. Biotechnol. 14: 262-267
26 Barer, M. R., L. T. Gribbon, C. R. Harwood, and C. E. Nwoguh. 1993. The viable but non-culturable hypothesis and medical microbiology. Rev. Med. Microbiol. 4: 183-191   DOI   ScienceOn
27 Baudart, J., J. Coallier, P. Laurent, and M. Prévost. 2002. Rapid and sensitive enumeration of viable diluted cells of members of the family Enterobacteriaceae in freshwater and drinking water. Appl. Environ. Microbiol. 68: 5057-5063   DOI   ScienceOn