DOI QR코드

DOI QR Code

Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System

  • Reuben, Rine Christopher (Department of Microbiology, Jashore University of Science and Technology) ;
  • Roy, Pravas Chandra (Department of Microbiology, Jashore University of Science and Technology) ;
  • Sarkar, Shovon Lal (Department of Microbiology, Jashore University of Science and Technology) ;
  • Ha, Sang-Do (School of Food Science and Technology, Chung-Ang University) ;
  • Jahid, Iqbal Kabir (Department of Microbiology, Jashore University of Science and Technology)
  • Received : 2019.07.15
  • Accepted : 2019.09.06
  • Published : 2019.12.28

Abstract

In the aquatic environment, microorganisms are predominantly organized as biofilms. Biofilms are formed by the aggregation of microbial cells and are surrounded by a matrix of extracellular polymeric substances (EPS) secreted by the microbial cells. Biofilms are attached to various surfaces, such as the living tissues, indwelling medical devices, and piping of the industrial potable water system. Biofilms formed from a single species has been extensively studied. However, there is an increased research focus on multispecies biofilms in recent years. It is important to assess the microbial mechanisms underlying the regulation of multispecies biofilm formation to determine the drinking water microbial composition. These mechanisms contribute to the predominance of the best-adapted species in an aquatic environment. This review focuses on the interactions in the multispecies biofilms, such as coaggregation, co-metabolism, cross-species protection, jamming of quorum sensing, lateral gene transfer, synergism, and antagonism. Further, this review explores the dynamics and the factors favoring biofilm formation and pathogen transmission within the drinking water distribution systems. The understanding of the physiology and biodiversity of microbial species in the biofilm may aid in the development of novel biofilm control and drinking water disinfection processes.

Keywords

References

  1. World Health Organization (WHO) 2010. Millennium Development Goals: Progress towards the Health-Related Millennium Development Goals; World Health Organization (WHO): Geneva, Switzerland. Available online: http://www.who.int/topics/millennium_development_goals/en/
  2. World Health Organization (WHO) 2015. Water Sanitation and Health. Available online: http://www.who.int/water_sanitation_health/diseases
  3. Alhamlan FS, Al-Qahtani AA, Al-Ahdal MN. 2015. Recommended advanced techniques for waterborne pathogen detection in developing countries. J. Infect. Dev. Con. 9: 128-135.
  4. Justin T, Cristal Z, Karsten Z. 2015. Unraveling interactions in microbial communities - from co-cultures to microbiomes. J. Microbiol. 53: 295-305. https://doi.org/10.1007/s12275-015-5060-1
  5. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95-108. https://doi.org/10.1038/nrmicro821
  6. Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167-193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  7. Jahid IK, Ha SD. 2012. A review of microbial biofilms of produce: future challenge to food safety. Food Sci. Biotechnol. 21: 299-316. https://doi.org/10.1007/s10068-012-0041-1
  8. Davey ME, O'toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  9. McKew BA, Taylor TJ, Underwood UJ. 2010. Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting. ISME J. 5: 30-41. https://doi.org/10.1038/ismej.2010.91
  10. Matz C, Kjelleberg S. 2005. Off the hook-how bacteria survive protozoan grazing. Trends Microbiol. 13: 302-307. https://doi.org/10.1016/j.tim.2005.05.009
  11. September S, Els F, Venter S, Brozel V. 2007. Prevalence of bacterial pathogens in biofilms of drinking water distribution systems. J. Water Health. 5: 219-227. https://doi.org/10.2166/wh.2007.004b
  12. Kim JG, Park SJ, Quan ZX, Jung MY, Cha IT, Kim SJ. 2014. Unveiling abundance and distribution of planktonic Bacteria and Archaea in a polynya in amundsen sea, Antarctica. Environ. Microbiol. 16: 1566-1578. https://doi.org/10.1111/1462-2920.12287
  13. Islam SM, Jahid IK, Rahmn MM, Rahman ZM, Islam SM, Kabir SM, 2007. Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in aquatic environment of Bangladesh. Microbiol. Immunol. 51: 369-379. https://doi.org/10.1111/j.1348-0421.2007.tb03924.x
  14. Johnson L. 2007. Microcolony and biofilm formation as a survival strategy for bacteria. J. Theor. Biol. 251: 24-34. https://doi.org/10.1016/j.jtbi.2007.10.039
  15. Romani AM, Giorgi A, Acuna V, Sabater S. 2004. The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnol. Oceanog. 49: 1713-1721. https://doi.org/10.4319/lo.2004.49.5.1713
  16. Terlizzi A, Faimali M. 2010. Fouling on artificial substrata. In Biofouling, Durr S and Thomason JC. eds. pp. 170-179. (Blackwell Publishing Ltd, Oxford, UK).
  17. Vadeboncoeur Y, Steinman AD. 2002. Periphyton function in lake ecosystems. Sci. W. J. 2: 1449-1468. https://doi.org/10.1100/tsw.2002.294
  18. Graba M, Sauvage S, Moulin FY, Urrea G, Sabater S, Sanchez-Perez JM. 2013. Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Res. 47: 2153-2163. https://doi.org/10.1016/j.watres.2013.01.011
  19. Murdock JN, Dodds WK. 2007. Linking benthic algal biomass to stream substratum topography. J. Phycol. 43: 449-460. https://doi.org/10.1111/j.1529-8817.2007.00357.x
  20. MacIntyre HL, Geider RJ, Miller DC. 1996. Microphytobenthos: the ecological role of the 'Secret Garden' of unvegetated, shallowwater marine habitats. I. Distribution, abundance and primary production. Estuaries 19: 186-201. https://doi.org/10.2307/1352224
  21. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM. 1998. The functional significance of the hyporheic zone in streams and rivers. Ann. Rev. Ecol. Evol. Syst. 29: 59-81. https://doi.org/10.1146/annurev.ecolsys.29.1.59
  22. Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A. 2013. Benthic algae stimulate leaf litter decomposition in detritusbased headwater streams: a case of aquatic priming effect? Ecology 94: 1604-1613. https://doi.org/10.1890/12-0606.1
  23. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11: 1065-1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x
  24. Tank JL, Rosi-marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Freshwater Sci. 29: 118-146.
  25. Hempel M, Blume M, Blindow I, Gross EM. 2008. Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol. 8: 58. https://doi.org/10.1186/1471-2180-8-58
  26. Rao D, Webb JS, Kjelleberg S. 2006. Microbial colonization and competition on the marine alga Ulva australis. Appl. Environ. Microbiol. 72: 5547-5555. https://doi.org/10.1128/AEM.00449-06
  27. De Beer D, Stoodley P. 2006. Microbial biofilms. In: The Prokaryotes. In Dworkin, M., Falkow, S, Rosenberg E, Schleifer KH, Stackebrandt E, eds. pp. 904-937. Springer, New York, NY, USA.
  28. Alldredge A. 1998. The carbon, nitrogen and mass content of marine snow as a function of aggregate size. Deep-Sea Res. Part 1 45: 529-541. https://doi.org/10.1016/S0967-0637(97)00048-4
  29. Simon M, Grossart H, Schweitzer B, Ploug H. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aqua. Microbial. Ecol. 28: 175-211. https://doi.org/10.3354/ame028175
  30. Tokajian ST, Hashwa FA, Hancock IC, Zalloua PA. 2005. Phylogenetic assessment of heterotrophic bacteria from a water distribution system using 16S rDNA sequencing. Can. J. Microbiol. 51: 325-335. https://doi.org/10.1139/w05-007
  31. Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF. 2013. Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol. 15: 2879-2893. https://doi.org/10.1111/1462-2920.12186
  32. Gaudes A, Artigas J, Romani AM, Sabater S, Munoz I. 2009. Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. J. N. Am. Benthol. Soc. 28: 34-43. https://doi.org/10.1899/07-131.1
  33. Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S. 2011. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5: 590-600. https://doi.org/10.1038/ismej.2010.164
  34. Irie Y, Parsek MR. 2008. Quorum sensing and microbial biofilms. Curr. Top. Microbiol. Immunol. 322: 67-79.
  35. Declerck P. 2010. Biofilms: the environmental playground of Legionella pneumophila. Environ. Microbiol. 12: 557-566. https://doi.org/10.1111/j.1462-2920.2009.02025.x
  36. Stewart CR, Muthye V, Cianciotto NP. 2012. Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions. PLoS One. 7: e50560. https://doi.org/10.1371/journal.pone.0050560
  37. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66: 486-505. https://doi.org/10.1128/MMBR.66.3.486-505.2002
  38. Burmolle M, Webb JS, Rao D, Hansen LM, Sorensen SJ, Kjelleberg S. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72: 3916-3923. https://doi.org/10.1128/AEM.03022-05
  39. Tait K, Sutherland I. 2002. Antagonistic interactions amongst bacteriocin‐producing enteric bacteria in dual species biofilms. J. Appl. Microbiol. 93: 345-352. https://doi.org/10.1046/j.1365-2672.2002.01692.x
  40. Mallegol J, Duncan C, Prashar A, So J, Low DE, Terebeznik M. 2012. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation. PLoS One. 7: e46462. https://doi.org/10.1371/journal.pone.0046462
  41. An D, Danhorn T, Fuqua C, Parsek MR. 2006. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl. Acad. Sci. USA 103: 3828-3833. https://doi.org/10.1073/pnas.0511323103
  42. Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME. 2006. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemo. 50: 1463-1469. https://doi.org/10.1128/AAC.50.4.1463-1469.2006
  43. Queck SY, Weitere M, Moreno AM, Rice SA, Kjelleberg S. 2006. The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. Environ. Microbiol. 8: 1017-1025. https://doi.org/10.1111/j.1462-2920.2006.00993.x
  44. Duan K, Dammel C, Stein J, Rabin H, Surette HG. 2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50: 1477-1491. https://doi.org/10.1046/j.1365-2958.2003.03803.x
  45. Tait K, Joint I, Daykin M, Milton DL, Williams P, Camara M. 2005. Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol. 7: 229-240. https://doi.org/10.1111/j.1462-2920.2004.00706.x
  46. Dong YH, Zhang LH. 2005. Quorum sensing and quorum quenching enzymes. J. Microbiol. 43: 101-109.
  47. Dong YH, Xu JL, Li XZ, Zhang LH. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA. 97: 3526-3531 https://doi.org/10.1073/pnas.97.7.3526
  48. Huang JJ, Han JI, Zhang LH, Leadbetter JR. 2003. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69: 5941-5949. https://doi.org/10.1128/AEM.69.10.5941-5949.2003
  49. McDougald D, Rice SA, Kjelleberg S. 2006. Bacterial quorum sensing and interference by naturally occurring biomimics. Ana. Bioana. Chem. 387: 445-453. https://doi.org/10.1007/s00216-006-0761-2
  50. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl. Acad. Sci. USA 101: 3587-3590. https://doi.org/10.1073/pnas.0308750101
  51. Hentzer M, Riedel K, Rasmussen TB. 2002. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148: 87-102. https://doi.org/10.1099/00221287-148-1-87
  52. Augustine N, Kumar P, Thomas S. 2010. Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Arch. Microbiol. 192: 1019-1022. https://doi.org/10.1007/s00203-010-0633-1
  53. Musthafa KS, Saroja V, Pandian SK, Ravi AV. 2011. Antipathogenic potential of marine Bacillus sp. SS4 on N-acylhomoserine- lactonemediated virulence factors production in Pseudomonas aeruginosa (PAO1). J. Biosci. 36: 55-67. https://doi.org/10.1007/s12038-011-9011-7
  54. Senadheera D, Cvitkovitch DG. 2008. Quorum sensing and biofilm formation by Streptococcus mutans. Adv. Exp. Med. Biol. 631: 178-188. https://doi.org/10.1007/978-0-387-78885-2_12
  55. Wang BY, Deutch A, Hong J, Kuramitsu HK. 2011. Proteases of an early colonizer can hinder Streptococcus mutans colonization in vitro. J. Dent. Res. 90: 501-505. https://doi.org/10.1177/0022034510388808
  56. Wingender J, Flemming HC. 2004. Contamination potential of drinking water distribution network biofilms. Water Sci. Technol. 49: 277-286. https://doi.org/10.2166/wst.2004.0861
  57. Szewzyk U, Szewzyk R, Manz W, Schleifer KH. 2000. Microbiological safety of drinking water. Ann. Rev. Microbiol. 54: 81-127. https://doi.org/10.1146/annurev.micro.54.1.81
  58. Armon R, Starosvetzky J, Arbel T, Green M. 1996. Survival of Legionella pneumophila and Salmonella typhimurium in biofilm systems. Water Sci. Technol. 35: 293-300.
  59. Momba MNB, Kfir R, Venter SN, Cloete RE. 2000. An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA. 26: 59-66.
  60. Eichler S, Christen R, Holtje C, Westphal P, Botel J, Brettar A. 2006. Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl. Environ. Microbiol. 72: 1858-1872. https://doi.org/10.1128/AEM.72.3.1858-1872.2006
  61. Ling F, Hwang C, LeChevallier MW, Andersen GL, Liu WT. 2016. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system. ISME J. 10: 582-595. https://doi.org/10.1038/ismej.2015.136
  62. Roeselers G, Coolen J, van der Wielen PW, Jaspers MC, Atsma A, de Graaf B. 2015. Microbial biogeography of drinking water: patterns in phylogenetic diversity across space and time. Environ. Microbiol. 17: 2505-2514. https://doi.org/10.1111/1462-2920.12739
  63. Douterelo I, Jackson M, Solomon C, Boxall J. 2016. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality. Appl. Microbiol. Biotechnol. 100: 3301-3311. https://doi.org/10.1007/s00253-015-7155-3
  64. Gibbs RA, Sutt JE, Croll J. 1990. Microbiological and trihalomethane responses to booster chlorination. J. IWEM 4: 131-139.
  65. Olivieri VP, Bakalian AE, Bossung KW, Lowther ED. 1985. Recurrent coliforms in water distribution systems in the presence of free residual chlorine. pp. 651-666. In Jolley RL, Bull RJ, Davis WP, Katz S, Roberts MH (Jr) and Jacobs VAO (eds.) Water Chlorination: Chemistry, Environmental Impac t and Health Effects. Lewis Publishers, Inc., Chelsea, MI.
  66. Camper MB, Ellis B, Buterfield P, Abernathy C. 1999. Development and structure of drinking water biofilms and techniques of their study. J. Appl. Microbiol. Symp. Suppl. 85: 1S-12S.
  67. Escobar IC, Randall AA, Taylor JS. 2001. Bacterial growth in distribution systems: effect of assimilable organic carbon and biodegradable dissolved organic carbon. Environ. Sci. Technol. 35: 3442-3447. https://doi.org/10.1021/es0106669
  68. Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW. 1994. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl. Environ. Microbiol. 18: 32-51. https://doi.org/10.1111/j.1472-765X.1994.tb00793.x
  69. Olson BH. 1982. Assessment and implication of bacterial regrowth in water distribution systems. EPA. 600/52-82-072 U.S. Environmental Protection Agency.
  70. Pinto AJ, Schroeder J, Lunn M, Sloan W, Raskin L. 2014. Spatialtemporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. MBio. 5: e01135-01114.
  71. Mackay WG, Gribbon LT, Barer MR, Reid DC. 1998. Biofilms in drinking water systems - A possible reservoir for Helicobacter pylory. Water Sci. Technol. 38: 181-185.
  72. Huq A, Whitehouse CA, Grim CJ, Alam M, Colwell RR. 2008. Biofilms in water, its role and impact in human disease transmission. Curr. Opin. Biotechnol. 19: 244-247. https://doi.org/10.1016/j.copbio.2008.04.005
  73. Fong J, Karplus K, Schoolnik G, Yildiz F. 2006. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J. Bacteriol. 188: 1049-1059. https://doi.org/10.1128/JB.188.3.1049-1059.2006
  74. Faruque S, Biswas K, Udden S, Ahmad Q, Sack D, Nair G, et al. 2006. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA 103: 6350-6355. https://doi.org/10.1073/pnas.0601277103
  75. Erken M, Farrenschon N, Speckmann S, Arndt H, Weitere M. 2012. Quantification of individual flagellate-bacteria interactions within semi-natural biofilms. Protist 163: 632-642. https://doi.org/10.1016/j.protis.2011.10.008
  76. Friman VP, Diggle SP, Buckling A. 2013. Protist predation can favour cooperation within bacterial species. Biol. Lett. 9: 20130548. https://doi.org/10.1098/rsbl.2013.0548
  77. Sun S, Kjelleberg S, McDougald D. 2013. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. PLoS One. 8: e56338. https://doi.org/10.1371/journal.pone.0056338
  78. Wey JK, Scherwass A, Norf H, Arndt H, Weitere M. 2008. Effects of protozoan grazing within river biofilms under semi-natural conditions. Aquat. Microb. Ecol. 52: 283-296. https://doi.org/10.3354/ame01236
  79. Huws S, McBain A, Gilbert P. 2005. Protozoan grazing and its impact upon population dynamics in biofilm communities. J. Appl. Microbiol. 98: 238-244. https://doi.org/10.1111/j.1365-2672.2004.02449.x
  80. Dopheide A, Lear G, Stott R, Lewis G. 2011. Preferential feeding by the ciliates Chilodonella and Tetrahymena spp. and effects of these protozoa on bacterial biofilm structure and composition. Appl. Environ. Microbiol. 77: 4564-4572. https://doi.org/10.1128/AEM.02421-10

Cited by

  1. Efficacy of Thai Plant Extracts for Antibacterial and Anti-Biofilm Activities against Pathogenic Bacteria vol.10, pp.12, 2021, https://doi.org/10.3390/antibiotics10121470