• Title/Summary/Keyword: Draw solute

Search Result 18, Processing Time 0.03 seconds

Synthesis of New Draw Solute Based on Polyethyleneimine for Forward Osmosis (정삼투를 위한 Polyethyleneimine 기반 유도용질 제조)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.286-295
    • /
    • 2018
  • A novel multi-valent salt based on polyethyleneimine having molecular weight of 800 (PEI 800) has been synthesized and characterized as forward osmosis draws solute. A reaction intermediate was synthesized by the neutralization reaction of polyethyleneimine and methyl acrylate, and was hydrolyzed with potassium hydroxide to synthesize a water soluble carboxylic acid (potassium salt) polyethyleneimine. NMR spectrometry, viscometry measurements and osmometry measurements was performed to characterize the draw solute. Forward osmosis experiments were done to know whether the solute could be used as a draw solute or not. The result shows comparable water flux and lower reverse salt flux compared with NaCl as a draw solute. We have also demonstrated recycling of the draw solute in the FO-NF integrated process.

Potassium Pentane-1,3,3,5-tetracarboxylate Draw Solute Synthesis and Application of Forward Osmosis Process (Potassium Pentane-1,3,3,5-tetracarboxylate 유도용질 합성 및 이를 이용한 정삼투 공정 응용)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2019
  • An organic citrate series draw solute was synthesized using diethyl malonate for forward osmosis. The structure of the final compound potassium pentane-1,3,3,5-tetracarboxylate was confirmed by $^1H-NMR$ and $^{13}C-NMR$ analysis. Osmotic pressure, solubility, water permeability and reverse salt flux were measured for the properties of the draw solute. Forward osmosis results showed that the draw solute exhibited higher water flux than other draw solutes of trisodium citrate and tripotassium citrate. Reverse salt flux of all the organic daw solutes was much lower than that of NaCl. The osmotic pressure of the synthesized draw solute was 25% lower than that of NaCl. The solubility of the draw solute was 317 g/ 100 g water, which is 8.8 times higher than that of NaCl. A commercialized nanofiltration membrane was used for the recovery of the draw solute. The draw solute could be effectively recovered at low pressure.

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.

Evaluating the Performance of Draw Solutions in Forward Osmosis Desalination Using Fertilizer as Draw Solution (유도용액으로 비료를 사용한 정삼투 해수담수화에서 유도용액의 성능 평가)

  • Jeong, Namjo;Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.400-408
    • /
    • 2014
  • This study is to evaluate the performance of draw solutions in forward osmosis desalination using fertilizer as draw solution. Considering osmotic pressure, solubility, and pH, $NH_4NO_3$, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, KCl, $KNO_3$, and $KHCO_3$ were screened from a comprehensive lists of fertilizer. Their performance were evaluated in terms of pure water permeate flux, reverse solute flux, and specific reverse solute flux for nitrogen and phosphorus. KCl showed the highest pure water permeate flux among the selected fertilizers while $(NH_4)_2HPO_4$ draw solution had the lowest flux. $NH_4H_2PO_4$ showed the lowest reverse solute flux and specific reverse solute flux for nitrogen followed by $(NH_4)_2HPO_4$, $KNO_3$, and $NH_4NO_3$. Although the pure water permeate flux of $NH_4H_2PO_4$ is lower than the other draw solutions, because it contains both nitrogen and phosphorus, and have the lowest reverse solute flux and specific reverse solute flux, it is a promising candidate as draw solution for forward osmosis desalination.

The Effect of Draw Solution Concentration on Forward Osmosis Desalination Performance Using Blended Fertilizer as Draw Solution (유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 담수화 성능에 대한 유도용액 농도의 영향)

  • Jeong, Namjo;Kim, Seung-Geon;Kim, Dong Kook;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.343-351
    • /
    • 2013
  • This study is to investigate the effects of the draw solution concentration on forward osmosis desalination performance using blended fertilizer as draw solution. As the concentration of blended fertilizer solution (draw solution) increased, the water permeate flux increased nearly linearly, but PR (performance ratio) was reduced. Using sea water and deionized water as the feed solution, respectively, at the blended fertilizer solution of 600 g/L $H_2O$, the PR obtained were 5.39 and 6.50, respectively. And as the concentration of blended fertilizer solution increased, the reverse solute flux for nitrogen (N), phosphorus (P), and potassium (K) increased nearly linearly, but specific reverse solute flux for them was reduced. The reverse solute flux and specific reverse solute flux became higher in the order of N > K > P.

Synthesis of n-nitrilotris(methylene) Phosphonic Acid Potassium Salt as a Draw Solute in Forward Osmosis Process (정삼투 분리막 공정 적용을 위한 n-nitrilotris(methylene) Phosphonic Acid Potassium Salt 유도용질의 합성)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.368-377
    • /
    • 2018
  • The n-nitrilotris(methylene) phosphonic acid (NTPA) potassium salt was synthesized as a draw solute for forward osmosis. NTPA-4K, NTPA-5K and NTPA-6K were synthesized by varying the content of KOH added to NTPA and confirmed by $^1H$-NMR and $^{13}C$-NMR. The osmotic pressure, viscosity, water flux and reverse salt flux were measured to characterize the draw solute. In the forward osmosis process when distilled water was used as a feed solution and 0.5 M of NTPA-4K, NTPA-5K and NTPA-6K were used as a draw solution, the water flux was 35.8, 38.8 and 42.2 LMH, the reverse salt flux was 5.4, 6.9 and 7.4 gMH, respectively. It was confirmed that the water flux was lower than the conventional NaCl draw solution, but the reverse salt flux was much lower. In order to recover the diluted draw solution, nanofiltration was conducted. The results showed that the draw solute could be retained by above 90%.

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

The Performance Evaluation of Blended Fertilizers as Draw Solution in Forward Osmosis Desalination (유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 혼합비료의 성능평가)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This study is to find the optimum draw solution in fertilizer-drawn forward osmosis desalination. Considering osmotic pressure, solubility, and pH, 20 blended fertilizers were screened. Their performance were evaluated in terms of pure water permeate flux, reverse solute flux, and specific reverse solute flux for nitrogen, phosphorus, and potassium. The pure water permeate flux of blended fertilizers including KCl were relatively higher. The reverse solute flux and specific reverse solute flux for nitrogen of blended fertilizers containing ${NO_3}^-$ ion were relatively higher than those of the nitrate ion-free draw solution. Those for phosphorus, and potassium of blended fertilizers including $NH_4H_2PO_4$, and $KNO_3$ were relatively higher than those of the phosphorus-free, and potassium-free draw solution, respectively. The blended fertilizer of $NH_4H_2PO_4$ and KCl contains all of nitrogen, phosphorus and potassium which are essential elements of fertilizer, and has the relatively high water permeation flux and the low reverse solute flux for nitrogen, phosphorus, and potassium. Therefore, it is the most effective draw solution for fertilizer-drawn forward osmosis desalination.

Phytochemical-based Tannic Acid Derivatives as Draw Solutes for Forward Osmosis Process (정삼투 공정의 유도용질로서의 식물 화학물질 기반의 탄닌산 유도체)

  • Kim, Taehyung;Ju, Changha;Kang, Hyo
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.157-168
    • /
    • 2018
  • Potassium tannate (TA-K), which is prepared by base treatment of the bio-renewable tannic acid (TA), was evaluated for its potential application as a draw solute for water purification by forward osmosis. The forward osmosis and recovery properties of TA-K were systematically investigated. In the application of forward osmosis through the active layer facing feed solution (AL-FS) method, the water flux of TA-K draw solution was significantly higher than that of the TA draw solution, while that of the latter was not identified. At a low concentration of 100 mM, the osmotic pressure (1,135 mOsmol/kg) of the TA-K draw solution was approximately 6.5 times that (173 mOsmol/kg) of the NaCl draw solution. Furthermore, the water flux and specific salt flux (6.14 LMH, 1.26 g/L) of the TA-K draw solution at 100 mM were approximately 2.5 and 0.5 times those of the NaCl draw solution (2.46 LMH, 2.63 g/L) at the same concentration, respectively. For reuse, TA-K was precipitated by using a metal ion and recovered through membrane filtration. This study demonstrates the applicability of a phytochemical material as a draw solute for forward osmosis.

Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System (압력지연삼투(PRO) 발전 시스템에서 채널 입구 압력차의 영향에 대한 수치해석적 연구)

  • Hong, Sung Soo;Ryoo, Won;Chun, Myung-Suk;Chung, Gui Yung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1~11 atm, the flow rate in the feed-channel decreased about 8~13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.