DOI QR코드

DOI QR Code

Synthesis of n-nitrilotris(methylene) Phosphonic Acid Potassium Salt as a Draw Solute in Forward Osmosis Process

정삼투 분리막 공정 적용을 위한 n-nitrilotris(methylene) Phosphonic Acid Potassium Salt 유도용질의 합성

  • Lee, Hye-Jin (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technolgy) ;
  • Choi, Jin-Il (Center for Small & Medium Enterprises Support, Technology Commercialization Division, Korea Research Institute of Chemical Technolgy) ;
  • Kwon, Sei (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technolgy) ;
  • Kim, In-Chul (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technolgy)
  • 이혜진 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 최진일 (한국화학연구원 기술사업화본부 중소기업지원센터) ;
  • 권세이 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김인철 (한국화학연구원 그린화학소재연구본부 분리막연구센터)
  • Received : 2018.10.11
  • Accepted : 2018.10.29
  • Published : 2018.10.31

Abstract

The n-nitrilotris(methylene) phosphonic acid (NTPA) potassium salt was synthesized as a draw solute for forward osmosis. NTPA-4K, NTPA-5K and NTPA-6K were synthesized by varying the content of KOH added to NTPA and confirmed by $^1H$-NMR and $^{13}C$-NMR. The osmotic pressure, viscosity, water flux and reverse salt flux were measured to characterize the draw solute. In the forward osmosis process when distilled water was used as a feed solution and 0.5 M of NTPA-4K, NTPA-5K and NTPA-6K were used as a draw solution, the water flux was 35.8, 38.8 and 42.2 LMH, the reverse salt flux was 5.4, 6.9 and 7.4 gMH, respectively. It was confirmed that the water flux was lower than the conventional NaCl draw solution, but the reverse salt flux was much lower. In order to recover the diluted draw solution, nanofiltration was conducted. The results showed that the draw solute could be retained by above 90%.

정삼투 공정에 유용한 유도용질로서 n-nitrilotris(methylene) phosphonic acid (NTPA) 염을 합성하였다. NTPA에 첨가하는 KOH의 함량을 변화시켜 NTPA-4K, NTPA-5K, NTPA-6K 세 종류의 유도용질을 합성하고 $^1H$-NMR, $^{13}C$-NMR을 통하여 확인하였다. 유도용질의 물성을 확인하기 위해 삼투압, 점도, 수투과도, 역염 투과도를 측정하였다. 정삼투 공정에서는 증류수를 유입용액으로 사용하고 0.5 M의 유도용액으로 실험한 결과 각각 수투과도는 35.8, 38.8, 42.2 LMH를 나타내고 5.4, 6.9, 7.4 gMH의 역염 투과도를 나타내었다. 이는 기존의 NaCl 유도용액보다 높은 수투과도와 훨씬 낮은 역염 투과도를 확인하였다. 정삼투 공정 후 묽어진 유도용질의 회수를 위해 나노여과 방식으로 상용막을 사용하여 제거율을 측정한 결과 90% 이상의 높은 성능을 확인하였다.

Keywords

References

  1. Y. Cai and W. Hu, "A critical review on draw solute development for forward osmosis", Desalination., 391, 16 (2016). https://doi.org/10.1016/j.desal.2016.03.021
  2. I. C. Karagiannis and P. G. Soldatos, "Water desalination cost literature: review and assessment", Desalination., 223, 448 (2008). https://doi.org/10.1016/j.desal.2007.02.071
  3. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  4. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance", J. Membr. Sci., 278, 114 (2006). https://doi.org/10.1016/j.memsci.2005.10.048
  5. W. Pusch and R. Riley, "Relation between salt rejection r and reflection coefficient If of asymmetric cellulose acetate membranes", Desalination., 14, 389 (1974). https://doi.org/10.1016/S0011-9164(00)80266-0
  6. A. D. Wilson and F. F. Stewart, "Deriving osmotic pressures of draw solutes used in osmotically driven membrane processes", J. Membr. Sci., 431, 205 (2013). https://doi.org/10.1016/j.memsci.2012.12.042
  7. J. Su and T. S. Chung, "Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO process", J. Membr. Sci., 376, 214 (2011). https://doi.org/10.1016/j.memsci.2011.04.031
  8. C. Suh and S. Lee, "Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution", J. Membr. Sci., 427, 365 (2013). https://doi.org/10.1016/j.memsci.2012.08.033
  9. C. H. Tnam and H. Y. Sg, "Revised external and internal concentration polarization models to improve flux prediction in forward osmosis process", Desalination., 309, 125 (2013). https://doi.org/10.1016/j.desal.2012.09.022
  10. Y. Wu, W. Peng, C. Y. Tang, Q. S. Fu, and S. Nie, "Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module", J. Membr. Sci., 348, 298 (2010). https://doi.org/10.1016/j.memsci.2009.11.013
  11. S. K. Yen, F. M. Haja N, M. Su, K. Y. Wang, and T. S. Chung, "Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis", J. Membr. Sci., 364, 242 (2010). https://doi.org/10.1016/j.memsci.2010.08.021
  12. R. Valladares Linares, Z. Li, S. Sarp, G. Amy, and J. S. Vrouwenvelder, "Forward osmosis niches in seawater desalination and wastewater reuse", Water Res., 66, 122 (2014). https://doi.org/10.1016/j.watres.2014.08.021
  13. K. Lutchmiah, A. R. Verliefde, K. Roest, L. C. Rietveld, and E. R. Cornelissen, "Forward osmosis for application in wastewater treatment: A review", Water Res., 58, 179 (2014). https://doi.org/10.1016/j.watres.2014.03.045
  14. V. Sant'Anna, L. D. F. Marczak, and I. C. Tessaro, "Membrane concentration of liquid foods by forward osmosis: process and quality view", J. Food Eng., 111, 483 (2012). https://doi.org/10.1016/j.jfoodeng.2012.01.032
  15. K. T. Wang, M. M. Teoh, A. Nugroho, and T.-S. Chung, "Integrated forward osmosis membrane distillation (FO-MD) hybrid system for the concentration of protein solutions", Chem. Eng. Sci., 66, 2421 (2011). https://doi.org/10.1016/j.ces.2011.03.001
  16. Q. Yang, K. Y. Wang, and T.-S. Chung, "A novel dual-layer forward osmosis membrane for protein enrichment and concentration", Sep. Purif. Technol., 69, 269 (2009). https://doi.org/10.1016/j.seppur.2009.08.002
  17. E. Nagy, "A general, resistance-in-series, salt- and water flux models for forward osmosis and pressure-retarded osmosis for energy generation", J. Membr. Sci., 460, 71 (2014). https://doi.org/10.1016/j.memsci.2014.02.021
  18. J.-J. Kim, H. Kang, Y.-S. Choi, Y. A. Yu, and J.-C. Lee, "Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (FO) applications", Desalination., 381, 84 (2016). https://doi.org/10.1016/j.desal.2015.11.013
  19. L. Chekli, S. Phuntsho, H. K. Shon, S. Vigneswaran, J. Kandasamy, and A. Chanan, "A review of draw solutes in forward osmosis process and their use in modern applications", Desalin Water Treat., 43, 167 (2012). https://doi.org/10.1080/19443994.2012.672168
  20. N. Jeong, S. G. Kim, D. K. Kim, and H. W. Lee, "The effect of draw solution concentration on forward osmosis desalination performance using blended fertilizer as draw solution", Membr. J., 23, 343 (2013).
  21. T. H. Kim, C. H. Ju, and H. Kang, "Phytochemical-based tannic acid derivatives as draw solutes for forward osmosis process", Membr. J., 28, 157 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.157
  22. Q. C. Ge, M. M. Ling, and T. S. Chung, "Draw solution for forward osmosis process: Developments, challenges, and prospects for the future", J. Membr. Sci., 442, 225 (2013). https://doi.org/10.1016/j.memsci.2013.03.046
  23. S. Phuntsho, S. Sahebi, T. Majeed, F. Lotfi, J. E. Kim, and H. K. Chon, "Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process", Chem. Eng. J., 231, 484 (2013). https://doi.org/10.1016/j.cej.2013.07.058
  24. S. H. Ahn, I. C. Kim, D. H. Song, J. Jegal, Y. N. Kwon, and H. W. Rhee, "Pore structure and separation properties of thin film composite forward osmosis membrane with different support structure", Membr. J., 23, 251 (2013).
  25. S. F. Zhao, L. zou, C. Y. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: opportunities and challenges", J. Membr. Sci., 396, 1 (2012). https://doi.org/10.1016/j.memsci.2011.12.023
  26. N. Kim and B. Jung, "Preparation of forward osmosis membranes with low internal concentration polarization', Membr. J., 24, 453 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.453
  27. C. D. Moody and J. O. Kessler, "Forward osmosis extractors", Desalination., 18, 283 (1976). https://doi.org/10.1016/S0011-9164(00)84118-1
  28. A. Achillli, T. Y. Cath, and A. E. Childeress, "Selection of inorganic-based draw solutions for forward osmosis applications", J. Membr. Sci., 394, 233 (2010).
  29. S. Phunsho, H. K. Shon, S. Hong, S. Lee, and S. Vigneswaran, "A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions", J. Membr. Sci., 375, 172 (2011). https://doi.org/10.1016/j.memsci.2011.03.038
  30. B. M. Jung, S. W. Han, Y. K. Kim, N. T. P. Nga, H. G. Park, and T. N. Kwon, "Condition for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.132
  31. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination., 174, 1 (2005). https://doi.org/10.1016/j.desal.2004.11.002
  32. C. Boo, Y. F. Khalil, and M. Elimelech, "Performance evaluation of trimethylamine-carbon dioxide thermolytic draw solution for engineered osmosis", J. Membr. Sci., 473, 302 (2015). https://doi.org/10.1016/j.memsci.2014.09.026
  33. C. J. Orme and A. D. Wilson, "1-Cyclohexylpiperidine as a thermolytic draw solute for osmotically driven membrane processes", Desalination., 371, 123 (2015).
  34. Q. Long and Y. Wang, "Novel carboxyethyl amine sodium salts as draw solutes with superior forward osmosis performance", AICHE J., 62, 1226 (2016). https://doi.org/10.1002/aic.15126
  35. Q. Long, G. Qi, and Y. Wang, "Synthesis and application of ethylenediamine tetrapropionic salt as a novel draw solute for forward osmosis application", AICHE J., 61, 1309 (2015). https://doi.org/10.1002/aic.14720
  36. Q. Long and Y. Wang, "Sodium tetraethylenepentamine heptaacetate as novel draw solute for forward osmosis-synthesis, application and recovery", Energy, 8, 12344 (2015).
  37. Q. Long, G. Qi, and Y. Wang, "Evaluation of renewable gluconate salts as draw solutes in forward osmosis process", ACS Sustain. Chem. Eng., 4, 85 (2016). https://doi.org/10.1021/acssuschemeng.5b00784
  38. N. T. Hau, S.-S. Chen, N. C. Nguyen, K. Z. Huang, H. H. Ngo, and W. Guo, "Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge", J. Membr. Sci., 455, 305 (2014). https://doi.org/10.1016/j.memsci.2013.12.068
  39. Q. Ge and T.-S. Chung, "Oxalic acid complex: promising draw solutes for forward osmosis (FO) in protein enrichment", Chem. Commun., 51, 4854 (2015). https://doi.org/10.1039/C5CC00168D
  40. D. Zhao, S. Chen, C. X. Guo, Q. Zhao, and X. Lu, "Multi-functional forward osmosis draw solutes for seawater desalination", CJChe., 24, 23 (2016).
  41. A. Yokozeki, "Osmotic pressures studied using a simple equation-of-state and its applications", Appl. Energy., 83, 15 (2006). https://doi.org/10.1016/j.apenergy.2004.10.015
  42. D. Stiger and T. L. Hill, "Theory of the donnan membrane equilibrium. II. calculation of the osmotic pressure and of the salt distribution in a donnan system with highly charged colloid particles", J. Phys. Chem., 63, 551 (1959). https://doi.org/10.1021/j150574a025