• Title/Summary/Keyword: Drain Bias

Search Result 203, Processing Time 0.019 seconds

Analysis of the Threshold Voltage Instability of Bottom-Gated ZnO TFTs with Low-Frequency Noise Measurements (Low-Frequency Noise 측정을 통한 Bottom-Gated ZnO TFT의 문턱전압 불안정성 연구)

  • Jeong, Kwang-Seok;Kim, Young-Su;Park, Jeong-Gyu;Yang, Seung-Dong;Kim, Yu-Mi;Yun, Ho-Jin;Han, In-Shik;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.545-549
    • /
    • 2010
  • Low-frequency noise (1/f noise) has been measured in order to analyze the Vth instability of ZnO TFTs having two different active layer thicknesses of 40 nm and 80 nm. Under electrical stress, it was found that the TFTs with the active layer thickness of 80 nm shows smaller threshold voltage shift (${\Delta}V_{th}$) than those with thickness of 40 nm. However the ${\Delta}V_{th}$ is completely relaxed after the removal of DC stress. In order to investigate the cause of this threshold voltage instability, we accomplished the 1/f noise measurement and found that ZnO TFTs exposed the mobility fluctuation properties, in which the noise level increases as the gate bias rises and the normalized drain current noise level($S_{ID}/{I_D}^2$) of the active layer of thickness 80 nm is smaller than that of active layer thickness of thickness 40 nm. This result means that the 80 nm thickness TFTs have a smaller density of traps. This result correlated with the physical characteristics analysis performmed using XRD, which indicated that the grain size increases when the active layer thickness is made thicker. Consequently, the number of preexisting traps in the device increases with decreasing thickness of the active layer and are related closely to the $V_{th}$ instability under electrical stress.

Switching and Leakage-Power Suppressed SRAM for Leakage-Dominant Deep-Submicron CMOS Technologies (초미세 CMOS 공정에서의 스위칭 및 누설전력 억제 SRAM 설계)

  • Choi Hoon-Dae;Min Kyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.21-32
    • /
    • 2006
  • A new SRAM circuit with row-by-row activation and low-swing write schemes is proposed to reduce switching power of active cells as well as leakage one of sleep cells in this paper. By driving source line of sleep cells by $V_{SSH}$ which is higher than $V_{SS}$, the leakage current can be reduced to 1/100 due to the cooperation of the reverse body-bias. Drain Induced Barrier Lowering (DIBL), and negative $V_{GS}$ effects. Moreover, the bit line leakage which may introduce a fault during the read operation can be eliminated in this new SRAM. Swing voltage on highly capacitive bit lines is reduced to $V_{DD}-to-V_{SSH}$ from the conventional $V_{DD}-to-V_{SS}$ during the write operation, greatly saving the bit line switching power. Combining the row-by-row activation scheme with the low-swing write does not require the additional area penalty. By the SPICE simulation with the Berkeley Predictive Technology Modes, 93% of leakage power and 43% of switching one are estimated to be saved in future leakage-dominant 70-un process. A test chip has been fabricated using $0.35-{\mu}m$ CMOS process to verify the effectiveness and feasibility of the new SRAM, where the switching power is measured to be 30% less than the conventional SRAM when the I/O bit width is only 8. The stored data is confirmed to be retained without loss until the retention voltage is reduced to 1.1V which is mainly due to the metal shield. The switching power will be expected to be more significant with increasing the I/O bit width.

Characteristics of Si Floating Gate Nonvolatile Memory Based on Schottky Barrier Tunneling Transistor (쇼트키 장벽 관통 트랜지스터 구조를 적용한 실리콘 나노점 부유 게이트 비휘발성 메모리 특성)

  • Son, Dae-Ho;Kim, Eun-Kyeom;Kim, Jeong-Ho;Lee, Kyung-Su;Yim, Tae-Kyung;An, Seung-Man;Won, Sung-Hwan;Sok, Jung-Hyun;Hong, Wan-Shick;Kim, Tae-You;Jang, Moon-Gyu;Park, Kyoung-Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.302-309
    • /
    • 2009
  • We fabricated a Si nano floating gate memory with Schottky barrier tunneling transistor structure. The device was consisted of Schottky barriers of Er-silicide at source/drain and Si nanoclusters in the gate stack formed by LPCVD-digital gas feeding method. Transistor operations due to the Schottky barrier tunneling were observed under small gate bias < 2V. The nonvolatile memory properties were investigated by measuring the threshold voltage shift along the gate bias voltage and time. We obtained the 10/50 mseconds for write/erase times and the memory window of $\sim5V$ under ${\pm}20\;V$ write/erase voltages. However, the memory window decreased to 0.4V after 104seconds, which was attributed to the Er-related defects in the tunneling oxide layer. Good write/erase endurance was maintained until $10^3$ write/erase times. However, the threshold voltages moved upward, and the memory window became small after more write/erase operations. Defects in the LPCVD control oxide were discussed for the endurance results. The experimental results point to the possibility of a Si nano floating gate memory with Schottky barrier tunneling transistor structure for Si nanoscale nonvolatile memory device.