• Title/Summary/Keyword: Downslope

Search Result 58, Processing Time 0.022 seconds

Global Warming and Alpine Vegetation

  • Kong, Woo-seok
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.363-369
    • /
    • 1999
  • Reconstruction of the past vegetational changes of Korea in connection with climate changes enables to understand the impacts of past and future global warming on alpine vegetation. Despite the early appearance of the cold-tolerant vegetation since the Mesozoic Era. the occurrence of warmth-tolerant vegetation during the Oligocene and Miocene implies that most of alpine and subalpine vegetations have been confined to the alpine and subalpine belts of northern Korean Peninsula. The presence of cold-episodes during the Pleistocene. however. might have caused a general southward and downslope expansions of cold-tolerant alpine and subalpine vegetation. But the climatic warming trend during the Holocene or post-glacial period eventually has isolated cold-tolerant alpine and subalpine vegetation mainly in the northern Korea. but also on scattered high mountains in the southern Korea. The presence of numerous arctic-alpine and alpine plants on the alpine and subalpine belts is mainly due to their relative degree of sensitivity to high summer temperatures. Global warming would cause important changes in species composition and altitudinal distributional pattern. The altitudinal migration of temperate vegetation upward caused by climatic warming would eventually devastate alpine plants.

  • PDF

The Santa Ana winds of Southern California: Winds, gusts, and the 2007 Witch fire

  • Fovell, Robert G.;Cao, Yang
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.529-564
    • /
    • 2017
  • The Santa Ana winds occur in Southern California during the September-May time frame, bringing low humidities across the area and strong winds at favored locations, which include some mountain gaps and on particular slopes. The exceptionally strong event of late October 2007, which sparked and/or spread numerous fires across the region, is compared to more recent events using a numerical model verified against a very dense, limited-area network (mesonet) that has been recently deployed in San Diego County. The focus is placed on the spatial and temporal structure of the winds within the lowest two kilometers above the ground within the mesonet, along with an attempt to gauge winds and gusts occurring during and after the onset of October 2007's Witch fire, which became one of the largest wildfires in California history.

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.

Atmospheric Pollutant Concentrations under the Influences of Internal Gravity Wave and Sea-Land Breeze Circulations in the Mountainous Coastal Regions (산악연안지역에서 내부중력파와 해륙풍순환 영향하의 대기오염농도)

  • Hyo Choi;Joon Choi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.18-33
    • /
    • 1995
  • Under the synoptic scale strong westerly winds flowing over the large steep mountains in the eastern coastal region, the strong downslope wind storms such as internal gravity waves should be generated in the lee-side of mountain. Int he daytime as sea breeze circulation induced by meso-scale thermal forcing from sea toward inland confines to the offshore side of coastal sites due to the eastward internal gravity waves. Thus, surface winds near the coastal seas were relatively weaker than those in the open sea or the inland sites. Evidently, two different kinds of atmospheric circulations such as an internal gravity wave circulation with westerly wind and a sea breeze circulation with both easterly wind near the sea surface and westerly in the upper level were apparently produced. Under this situation the atmospheric pollutants at Kangnung city should be trapped by two different circulations in the opposite directions and resulted in the high concentrations of Total Suspended Particles (TSP) and ozone (O3). At night a meso-scale land breeze from land toward the more intensification of westerly winds in the coastal regions. The concentrations of TSP controled by the strong surface winds blowing from the mountain side toward the coastal sea were relatively higher at night than those in the daytime case and the concentrations of O3 due to the downward transport of ozone from the upper atmosphere toward the surface were also much higher at night than during the day. Consequently, the atmospheric pollutant concentrations in the mountainous coastal region under the downslope wind storms were higher than those after and before the occurrences of wind storms.

  • PDF

A Stochastic Numerical Analysis of Groundwater Fluctuations in Hillside Slopes for Assessing Risk of Landslides (산사태 위험도 추정을 위한 지하수위 변동의 추계론적 수치 해석)

  • 이인모
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.41-54
    • /
    • 1987
  • A stochastic numerical analysis for predicting the groundswater fluctuations in hillside slopes is performed in this paper to account for the uncertainties associated with the rainfall and site characteristics. The effect of spatial variabilities of aquifer parameters and the effect of temporal variability of recharge on the groundwater fluctuations are studied in depth. The Kriging is used to account for the spatial tariabilities of aquifer parameters. This technique prolevides the best linear unbiased estimator of a parameter and its minimum variance from a litsitem number of measured data. A stochastic one-dimensional numerical model is delreloped b) combining the groundwater flow model, the Kriging, and the first-order second-moment analysis. In addition, a two dimensional detelministic groundwater model is developed to study the change of ground water surfas in the transverse direction as well as in the downslope direction. It is revealed that the undulations of the impervious bedrock in addition to the permeability and the specific yield have an important influence on the fluctuations of the groundwater surface. It is also found that th'e groundwater changes significantly in the transverse direction as well as in the downslope direction. The results obtained in this analysis may be used for evaluation of landslide risks due to high porewater pressure.

  • PDF

Validation of Numerical Model for the Wind Flow over Real Terrain (실지형을 지나는 대기유동에 대한 수치모델의 검증)

  • Kim, Hyeon-Gu;Lee, Jeong-Muk;No, Yu-Jeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Estimation of Pollutant Delivery Load in Hydraulic and Hydrologic Aspects for Water Quality Modeling (수질모델링을 위한 유달부하량의 수리·수문학적 산정)

  • Kim, Sang dan;Song, Mee Young;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • A hydraulically and hydrologically based estimation method of pollutant delivery load for water quality modeling is proposed. The proposed method works on grid basis and routes overland flows from one cell to the next following the maximum downslope directions. The method is able to consider spatially-varied data of source pollutant, topography, land slopes, soil characteristics, land use and aspects, which can be extracted from geographic information systems (GIS) and from digital elevation models (DEMs). Because of this feature, the proposed method can be expected to be used for evaluating the impacts of various practices on watershed management for water quality.

  • PDF

Origins and Paleoceanographic Significance of Layered Diatom Ooze from Bransfield Strait in the Northern Antarctic Peninsula around 2.5 kyrs BP

  • Yoon, Ho-Il;Kim, Yea-Dong;Park, Byong-Kwon;Kang, Cheon-Yun;Bae, Sung-Ho;Yoo, Kyu-Chul
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.301-311
    • /
    • 2002
  • We used diatom and porewater data of two piston cores from the central subbasin and one from the western subbasin in the Bransfield Strait in the northern Antarctic Peninsula to elucidate the depositional mechanism of the layered diatom ooze. The layered diatom ooze is characterized by an abundance of organic carbon, biogenic silica, sulfde sulfur, and lower porewater sulfate concentration. This lack of pore-water sulfate concentration in the diatom ooze interval may reflect development of reducing micro-environment in which bacterially mediated sulfate reduction occurred. The negative relationship between the total organic carbon and sulfate contents, however, indicates that sulfate reduction was partly taking place but does not control organic carbon preservation in this unit. Rather, well-preserved Chaetoceros resting spores in the layered diatom ooze indicate a rapid sedimentation of the diatom as a result of repetitive iceedge blooms on the Bransfield shelf during the cold period (around 2500 yrs BP) when the permanent seaice existed on the shelf, During this period, it is expected that the downslope-flowing cold and dense water was also formed on the Bransfield shelf as a result of sea ice formation, playing an important role for the formation of layered diatom ooze in the Bransfield subbasins.

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF

Influence of Local Wind on Occurrence of Fog at Inland Areas (국지풍이 내륙의 안개발생에 미치는 영향)

  • Shim, Hwa-Nam;Lee, Young-Hee
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.213-224
    • /
    • 2017
  • We have examined the influence of local wind on occurrence of fog at two inland areas, Chuncheon and Andong, in Korea. The surrounding topography of two inland areas shows significant difference: Chuncheon is located in the basin surrounded by ridges with north-south axis while Andong is located in the valley between the ridges with east-west axis. Occurrence of fog shows maximum in October at both sites but high occurrence of fog at Chuncheon is also noted in the winter. Occurrence of fog at Andong in October is much larger than that at Chuncheon. High occurrence of fog in October is due to favorable synoptic condition for fog formation such as weak wind, clear day and small depression of the dew-point. Fog occurrence at Chuncheon is closely related to very weak wind condition where wind speed is less than $0.5m\;s^{-1}$. The weak wind at Chuncheon in winter is due that pressure driven channeling wind (southerly) cancels out partly downslope northerly flow during nighttime. On the other hand, fog at Andong occurs well when wind is southeasterly which is thermally forced flow during nighttime. Southeasterly provides cold, moist air from the narrow valley to Andong during nighttime, leading to favorable condition for formation of fog.