A Stochastic Numerical Analysls of Groundwater
Fluctuations in Hillside Slopes for
Assessing Risk of Landslides
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Abstract

A stochastic numerical analysis for predicting the groundwater fluctuations in hillside slopes
is performed in this paper to account for the uncertainties associated with the rainfall and site
characteristics. The effect of spatial variabilities of aquifer parameters and the effect of temporal
variability of recharge on the groundwater fluctuations are studied in depth. The Kriging is
used to account for the spatial variabilities of aquifer parameters, This technique provides the
best linear unbiased estimator of a parameter and its minimum variance from a limited number
of measured data. A stochastic one-dimensional numerical model is developed by combining the
groundwater flow model, the Kriging, and the first-order second-moment analysis. In addition,

a two dimensional deterministic groundwater model is developed to study the change of ground-
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water surface in the transverse direction as well as in the downslope direction. It is revealed
that the undulations of the impervious bedrock in addition to the permeability and the specific
yield have an important influence on the fluctuations of the groundwater surface. It is also
found that the groundwater changes significantly in the transverse direction as well as in the
downslope direction. The results obtained in this analysis may be used for evaluation of landslide

risks due to high porewater pressure.

1. Introduction

Landslides on steep hillside slopes are common in mountainous parts around the world. They
could cause loss of life, and destruction to natural environment, man-made structures, etc.!!r131415
A common type of landslides is the debris flow or debris avalanche, where the shallow soil cover
on a sloping bedrock becomes saturated and flows down the slope. Current methods of stability
analysis in hillside slopes are based on the effective stress principle with an infinite slope. The

safety factor F. in Fig. 1 can be expressed as

e+ {wr W5 uftan g5,

Wk Wy rsina + Fa &
where W.=the weight of soil, W:=the weight of trees, F.=the wind force on the trees, ¢’ and

F.S:

¢’ =the cohesion and angle of internal friction in terms of effective stresses, respectively, S-=the
contribution of the roots of trees to shear strength, and u=the porewater pressure. The porewater
pressure, u, is related to the fluctuation of the groundwater surface and can be obtained from
(See Fig. 1)

Fig. 1. Forces on Sliding Soil Mass
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where 7. is the unit weight of water. Thus, the movement of groundwater is one of the
important factors initiating landslides. In other words, landslide risk may be expressed as the
probability of the porewater pressure exceeding the value required to produce shear failure. The
groundwater fluctuates significantly with a function of space as well as with a function of time,
associated with rainfall.’%!® A typical example which shows the fluctuations is shown in Fig.
21519 Ag shown in Fig. 2, the rise in piezometer changes significantly from point to point at
a given time, besides it shows significant changes with respect to time associated with rainfall
intensity. This paper addresses the fluctuations of the groundwater surface due to infiltration of
rainfall and drainage by gravity flow. A stochastic numerical analysis is formulated to account

for the uncertainties associated with rainfall and site characteristics.
2. Theoretical Basis of Groundwater Flow

For the groundwater flow in a shallow soil cover on a sloping impervious bedrock, the following
simplifying assumptions are used:
1) Only saturated flow is considered. This means that the flow in the unsaturated zone above

water surface is replaced by vertical flow conveying recharge from the ground surface down
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Fig. 3. Groundwater Flow on a Sloping Bed

to the water surfaca.

2) The streamlines in the s-direction are parallel to the s-axis (see Fig. 3) and the total head at
a point in the s-direction is same along the z-axis. It is called the extended Dupuit-Forchheimer
assumption. %

3) The flow occurs mainly in the downslope direction along the s-axis. This assumption leads to
a one-dimensional idealization.

Considering a thin soil cover overlying impervious bedrock on a hillslope of slope angle 6 (see

Fig. 2), the flow quantity within the saturated zone is
o=(— K« S )u 1) ®

in which @®=total hydraulic head, K=permeability of soil, A=depth of the groundwater surface

above the impervious bedrock, measured perpendicular to the s-axis. The total head, @, is a
combination of the elevation head and the porewater pressure head:
@=s*sin §-- (h-+D)*cos 8 (4)
It has been common to assume that D in Fig. 3 is zero in the governing equation. This
assumption is reasonable if & in Fig. 3 is much greater than D. However, for the shallow soil
cover on the bedrock, groundwater fluctuations may be sensitive to the topography of bedrock,
and it may not be ignored in the equation. D can be expressed as
D=D.,— D, %)
in which D.=depth between the ground surface and the s-axis and D,=depth of the soil cover.

The continuity equation is

oh _ . 3Q
S =175 ®
in which S,=specific yield, I=input per unit area parallel to the s-axis. Eqs. 3 to 6 are combined
to give
oh___ 2 cpu[ Gh_ OD:  0Ds N o
S0 = Recos B+ 2 [ Kot {cos o 22 0L 0D J+sin 6} @

in which R=1I/cosf. Since Eq. 7 can not be solved analytically, a numerical technique is used.?
The finite difference form of Eq. 7 is
—— ®
yi
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1 K"+12+K" )( h"“;‘h‘ ){ “Z’ff (hiss—hit Dis — Du— Diis+ Diichsin 6]
~( I‘”“ZK"* >< ’“Tzh"** ){ Cgiﬂ (hi=hicy D= Dy—y = Dk Dat-) +sin 0} |
-+ Ri*cos 0

with space index 7, and time index ¢.
3. A Stochastic Model for Groundwater Flow

3.1. First-order Seond-moment Analysis

The numerical flow model, Kriging, and first-order second-moment analysis are combined to
develop a stochastic model for the prediction of the depth of the groundwater surface in a shallow
soil cover overlying the impervious bedrock. The first-order second-moment analysis is charact-
erized by the following two features:

1) Under the assumption of statistical homogeneity for the medium, the random vector x is
characterized by the first two moments. That is, the state vector is described in terms of its
mean vector and covariance matrix:

z(8)=[%(), CecrJ €)
in which %(z)=mean of the random vector x(¢), and C:. —its covariance matrix.

2) Only the first order terms in the Taylor's expansion are used in dealing with functional
relationships among random variables. In other words, if the function is expressed as

R(t+dt)=f[h(t), u(t), K] (10)
in which A(t+4¢) and A(t)=state vectors at time z-+4¢ and #, respctively, u(#)=vector of the
inputs to the system, and K=vectors of the parameters of the model, then the furction can be

linearized as

W20 =FTR(), 20, K1+ L Dby = b1+ 52l —n )]+ 2

It is assumed that the K, the S,, the D, and the R are random variables. The aquifer

K-K) (D

parameters between two elements are correlated with each other, and can be expressed as

K=[EK, C«] (12a)
S,=[S,, Cs,] (12b)
D.={D., Co.] (12¢)

in which ()=state vector of mean values for each element, and C(.,=covariance matrix. Among
these aquifer parameters, the permeability and the specific yield are correlated and the cross-
covariance matrix between these two is represented as Cks,.

The formulation developed by Dettinger and Wilson®'® is adoptd to derive the equations for

the first-order second-moment analysis. Assume an augmented state vector

a3
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with the covariance matrix
Ch(t) ChKu) ChS,(:) Clle(t) ChR.{z)

CTlikey Cx Cks, — —
Cxin=_CThs,y CTks, Cs, — — (14)
! CTipsy — — Co, - \.
[CTuren - — — Cra |
in which superscript T represents transpose of the matrix. The covariance matrix of the predictive
model is
[Chean Crrcran Chs,qsan Chpsevan Chrrergan
CTigcian Ck Cks, — —
Cx@san=|Crs,cesn  Cxs, Cs, — — (15)
CThD;(t+At) - - CD: -
CThR(t+At) - e - CR\H—A!) i
(@ P E N _ F {QT — - — —
- 1 o~ - — PT I - - —
=— — I — —! Cxs E* — I - —
N — NT  — T _
- - - = I FT — — — I

in which @, P, E, N, and F are sensitivity matrices. Manipulating this matrix multiflication
leads to the following covariance matrices:
Craran=6 CityQT+Q CikeyPT+P CToixyQT+Q Cis, s ET
+E CTus,0sQ"+Q Cipss NT+N CTup,(n QT+Q Cirn FT
+F CTizyQ¥+F Criy FT+P CkPT+E Cs,ET

+P Cgs,ET+E CTxs,PT™+N Cp,NT (16a)
Cikarany=0Q Crxy+=P Cx+E Cks, (16b)
Chs,e1a=0Q Cis,i»+ P Cks,+ECs, (16¢)
Cipsciany=0Q Cipsay+ N Cb, (16d)
Cirasan=0Q Cirey+F Cre (16e)

Referring to these equations, the uncertainty of the predicted groundwater surface at time -4z
is the function of uncertainties of the A(z), uncertainties of the K, the S, and the D. uncer-

tainty of the recharge, R(#), and cross-correlations.
3.2 Kriging

The permeability (K), the specific vield (S,), and the depth of soil cover overlying impervious
bedrock (D.) change from point to point along a slope. This inherent spatial variability can be
eliminated if we can determine exact values of these at every point within the domain and take
these into consideration in the analysis. However, it is not easy to get measured values for every
element. Only limited number of measured data are usually obtainied from tests. The method of
Kriging 1s used to estimate the parameters for every element in the finite difference mesh. The
Kriging is an estimation technique which provides the best linear unbiased estimator of parameters
for each element.®®
Consider an element V having a true unknown spatially averaged value Zy, and a series of

n samples of measured values Z: (i=1,...,n). The best estimater of Zv, Z*, can be expressed as
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a linear combination of »n data values (see Fig. 4) as

Z*= 3" anZi (17

The weights a: should be calculated so as to ensure that the estimator is unbiased and that the

.estimation variance is minimal. The non-bias condition is satisfied by
S ai—1=0 18)
it

If E(Z)=m, the estimation variance may be written in terms of the covariance as
VAR(Z*)=E(Zy—Z*)*?
=COV(V,V)—2x% Z‘_a:‘*CO VIV, vi)+ Zizja.'*aj*COVCv;,'vj) (19)

where COV(V,V)=the variance of spatially averaged parameter over element V, COV(V,v:)=
the covariance of element V and sample v, COV (v v,;)=the covariance of measured sample v:
and v;, The weights @: that minimize this error variance are found by the association of a
Lagrange multiplier, 24, with the constraint given in Eq. 18, and by the solution of the first
order conditions directly for a:; and g as given below. The Lagrangian is

Lia, )=COV(V,V)=2x T axCOV(V, vi) + 3 2 axapCOV(vi, v;)—2xu(l— Z ai) (20)

The first-order necessary conditions are

?)5 =0=—2xCOV(V, vi)+2x 2 axCOV (v, vj)—2xp @D
and
Va‘L._:OZ Za;——l Z:]., 2,"'971 <22)
ou i

If we express these in matrix form,

_jfay (COVIV, v)

'COV(vl v,) COV(v, vy) COV(v Un) ! :
‘ COV(vi, vj) —1} a | COV(V:', :) (23)
COV(v,. v,) COV(va, 0,)+-COV (0n, vs) —1J o | | COVCV, o) J
1 1 1 o, )
or
[Kyv]+[a]=[Kv.] (24)
Since K matrices have fully known elements, we can express Eq. 24 as
Lal=[Kyv]'*[Ky.] (25)
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Therefore, estimates of the parameters become
Z*= anZi (26)
where a: can be obtained by using Eq. 25, and
VAR(Z*)=COV(V, V)—la]™*[Ky.] @7
Eqs. 25,26, and 27 are used for the best estimation of parameters such as the K, the S, and

the D, for each element.

3.3 Recharge Model

For estimating the recharge from rainfall, the model developed by Johnson and Sangrey et
al. is used in this study.”!® The recharge, R, can be expressed as
R=P-Qr—L (28)
in which P=precipitation, Qz=runoff, and E=evapotranspiratior.. Because both the runoff and
the evapotranspiration are functions of the precipitation, the recharge. R, is also a function of

the precipitation. That is:

Qr=f{P) 29

E=f(P) (305
and

R=f(P) (31)

Further, Goldschmidt suggested linear functions between the precipitation and the runcff and

the evapotranspiration:

Qr=co+c1*P (32)
E=dy+d*P (33

Then, the recharge, R, can be expressed as
R=(—cy—do) +(1—c1—d)=p (34

On the other hand, Thornthwaite proposed a model which could predict the monthly potential
evapotranspiration, PE. by expressing it in terms of the monthly temperature. T'n:

PE.=f(T~) (35)
The potential evapotranspiration is the upper bound of the evapotranspiration. Therefore, it
usually overstimates the actual monthly evapotranspiration. To overcome this problem Johnson
propcsed a model which combined Goldschmidt method with Thornthwaite’s. To apply his
model, the annual evapotranspiration should be observed. It can be expressed as

E,=d,+d.+P, (36)
in which Ey=annual evapotranspiration, and P,=annual precipitation. The coefficients d,, and
d, are obtained from the regression analysis between E, and P, His model is expressed as:

Rn=dym+din*Pnr 37

in which R-=mean monthly recharge, and P.=mean monthly precipitation, domw=—do*(PE/
PE,), and din=1—d*(PE./PE,)*x(Py/Pn). To obtain the recharge on a daily basis instead of
a month, Eq. 37 has to be divided into the number of days a month, ns, That is:

Ra=dn/nit+dim*(Prfss) =don/ natdim* Pa (38
The drawback of using Eq. 38 for the estimation of daily recharge is that change of the daily

recharge from a month to the next is abrupt due to change in the coefficients (dy» and di=)
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. 5. Linear Spline Method

&3]
[
o

between elements. To overcome this problem, the linear spline method was developed by Johnson
to make these coefficients varv smoothly rather than adrupt. For the coefficients, do» and din,
two straight lines within a month instead of constants are used. One line is used between at the

beginning of a month and at the center, and the other is used for the second half parts of a

month. These are shown in Fig. 5.

4. A Two-Dimensional Groundwater Model

The one-dimensional groundwater model is based on the assumption that the flow occurs
mainly in the downslope direction. This assumption implies that the bedrock profile is approx-
imately horizontal in the transverse direction. As a matter of fact, it is not true in most cases.
Slopes in the transverse direction concentrate groundwater flow in the depressed zones such that
the depth of the groundwater surface is larger in these zones than in surrounding areas.®!® Due
to this reason, more landslides occur in the depressed zones than in others. To study the change
of the groundwater surface in the transverse direction as well as in the downslope direction, a
two-dimensional groundwater model is also developed. Since the main purpose of this model is to
study the spatial variation of the groundwater surface in the transverse direction or to study the
effect of the transverse flow on the depth of the groundwater surface in the depressed zones,
only deterministic approach based on mean properties is considered. The direction of the transverse
flow in the zone ‘R’ is opposite to that in the zone ‘L’ shown in Fig. 6. Therefore, two zones
have to be solved separately.

The following assumptions are used in the two-dimensional analysis:

ABLETREE 49



1) As in the one-dimensional analysis, only saturated flow is considered.

2) In the downslope direction, the streamlines are parallel to the s-axis (see Fig. 6).

3) For the flow in the transverse direction, the Dupuit-Forchheimer assumption is used, which
assumes that the flow lines within the saturated zone are horizontal, The reason is as follows.
‘First’, the slope angle in the transverse direction is usually small compared to that in the
downslope direction. Second, this assumption is at least correct in the depression boundary (see
Fig. 6).

Consider a thin soil cover overlying impervious bedrock on a hillslope of angle # in the down-

slope direction and angle a in the transverse direction (see Fig. 7). The flow within the saturated

zone can be described by Darcy’s law:

Ve=—K.s20. (39a)
00
Vi=— K= (39b)

Elevated Zone

Depressed Zone

3zction B-B X

Secrion A-A
Fig. 6. Two-Dimensional Groundwater Flow on a Sloping Bed

50 3% 4819874 12 A



Ground surface .
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in which @ is the total potential head which is the combination of the pressure head and the

elevation head. That is:
@ =C(h+D)*cos 0+s*sin §+x*tan o (40)
From the continuity of the groundwater flow, and by assuming the permeability to be isotropic,

the following two-demensional equation is obtained:

oh 2 /3h . 3D _ 9D, ‘
Syr-Z= Ricos -+~ Kor|cos 0+ Zit 220 - £ J+tanaf |
5 ; oh 3D, oD, \ .
+ 55 @_K*h*{cosﬁ*r\ s + TR >+sm HH 4D

As in the one-dimensional case, the explicit numerical technique is used. For the estimation

of aquifere parameters for each element, the two-dimensional Kriging has to be used.

5. Illustrative Examples

The method developed is used to compute the groundwater fluctuations in a hypothetical slope,
that represents a small drainage basin shown in Fig. 8a. The slope and the finite difference
meshes for the one-dimensional analysis are shown in Fig. 8d. The values of K, S,, and D, are
assumed to be observed at specific points. The location of these points and the measured values.
are shown in Figs. 8b and c¢. The recharage is shown in Fig. 9a. The computed mean and
coefficient of variation (C.O.V.) of i along the slope are shown in Fig. 10a and b. The h’s
show relatively highy values in the area of low permeability when compared to those in the area
of high permeability. The computed mean and coefficient of & as a function of time are shown
in Fig. 9b and ¢, respectively for two elements. The rise and drop of & as a function of time
near the head of valley is more abrupt than that near the mouth of valley.

The effect of bedrock topography on % is also studied by comparing h’s with a smooth topog-
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raphy and with an undulating topography shown in Fig. 1la. The typical results are shown in
Fig. 11b. The results show that the influence of the bedrock topography is an importart factor.

The same basin shown in Fig. 8a is used to illustrate the deterministic two-dimensional analysis
developed in this paper. Finite difference meshe are shown in Fig. 12. All input data are same
as those for the one-dimensional case. A typical profile of the mean groundwater surface in the
transverse direction is shown in Fig. 13. The variation of the mean groundwater surface from
the depressed zone to the elevated zone is significant. It ranges from full saturation to zero
waterhead. It is also observed that full saturation is quickly developed in most depressed zones

except at few upstream parts.

b

5

3

A
=4 _

J

-

o

)

——

r

Zlevactidn(m)

L
<

R e
A
Ve
oo
i
&

55 o L Zsaturated
%
| 3 At t = 1) days
s G F 3 Elem. No. 20
i 4
SR i
—1H Z
] £5=1.725m i B
] A_j( . . o 1 1 i
=5 AX=0.9286m 1 5 -
- _{_;:! 10 15
1l
H Centour Interval: 3.04m Zlem. No. {Iransverse)
i
(4%=0.9284-)
om 16, Fig. 13. Profiles of Groundwater Surface
SO

in Transverse Direction.

Fig. 12. Two-Dimensional Finite Difference
Meshes

6. Summary and Conclusions

A stochastic numerical model for the prediction of the groundwater fluctuations in a shallow
soil cover on a sloping bedrock is developed. Groundwater fluctuations are found to be significant
as a function of space as well as a function of time. It is also revealed that in addition to the
permeability and the specific vield, the undulations of the impervious surface have an important
influence on the groundwater fluctions.

A two-dimensional groundwater model besides the one-dimensional stochastic model is also
developed to study the change of the groundwater surface in the transverse direction as well as
in the downslope direction. It is revealed that the groundwater changes significantly in the
transverse direction from zero waterhead in the elevated zones to full saturation in the depressed

Zones.



The approach obtained in this analysis may be used in the reliability analysis for assessing the

risk of landslides in hillside slopes. The approach formulated in this paper is general in nature

and can also be used in cases where there is a change in slope, nonstationary processes, or

heterogeneous soil deposits with some modifications.
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