• Title/Summary/Keyword: Down converter

Search Result 353, Processing Time 0.023 seconds

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.

Analysis and Implementation of the Capacitive Idling SEPIC (용량성 아이들링 SEPIC의 분석 및 구현)

  • 최동훈;조경현;나희수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • As the portable electronic equipments are developed and popularized, the batteies are more important. To prolong life of the equipments, engineers demand to have batteries of high-power density and they are used to use Li-ion batteries popularly Li-ion batteries are better than conventional batteries, Ni-cd, about power density per volume and weight, but they have a fault that discharge voltage of them goes down. In order to maximize life of the Li-ion batterries, we have to use a converter which is suitable for the characteristic of Li-ion batteries. Therefore, capacitive idling SEPIC(Single Ended Primary Inductance Converter) that is derived from the SEPIC topology is proposed as a source of the Portable low-power applications. The converter has characteristics of buck-boost porformance. Besides, that makes it possible to increase the switching frequency by partial soft commutation of power switches through adding a diode and a switch. This paper is presented the characteristics, DC voltage conversion ratio, circuits of operation modes, of the converter and it is analized and implemented.

Design of the RF Front-end for L1/L2 Dual-Band GPS Receiver (L1/L2 이중-밴드 GPS 수신기용 RF 전단부 설계)

  • Kim, Hyeon-Deok;Oh, Tae-Soo;Jeon, Jae-Wan;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1169-1176
    • /
    • 2010
  • The RF front-end for L1/L2 dual-band Global Positioning System(GPS) receiver is presented in this paper. The RF front-end(down-converter) using low IF architecture consists of a wideband low noise amplifier(LNA), a current mode logic(CML) frequency divider and a I/Q down-conversion mixer with a poly-phase filter for image rejection. The current bleeding technique is used in the LNA and mixer to obtain the high gain and solve the head-room problem. The common drain feedback is adopted for low noise amplifier to achieve the wideband input matching without inductors. The fabricated RF front-end using $0.18{\mu}m$ CMOS process shows a gain of 38 dB for L1 and 41 dB for L2 band. The measured IIP3 is -29 dBm in L1 band and -33 dBm in L2 band, The input return loss is less than -10 dB from 50 MHz to 3 GHz. The measured noise figure(NF) is 3.81 dB for L1 band and 3.71 dB for L2 band. The image rejection ratio is 36.5 dB. The chip size of RF front end is $1.2{\times}1.35mm^2$.

A CMOS Voltage Driver for Voltage Down Converter (전압 강하 변환기용 CMOS 구동 회로)

  • 임신일;서연곤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.974-984
    • /
    • 2000
  • A CMOS voltage driver circuit for voltage down converter is proposed. An adaptive biasing technique is used to enhance load regulation characteristics. The proposed driver circuit uses the NMOS transistor as a driving transistor, so it does not suffer from large Miller capacitances which is one of the problems with conventional PMOS driving transistor, and hence achieves good phase margin and stable frequency response. No additional complex circuit for frequency compensation such as compensation capacitor is required in this implementation. For the same current capability, the size of NMOS transistor in driver circuit is smaller than that of PMOS counterpart. So the smaller die area can be achieved. The circuits is implemented using a 0.8 ${\mu}{\textrm}{m}$ CMOS process and has a die area of 150 ${\mu}{\textrm}{m}$ x 360 ${\mu}{\textrm}{m}$. Proposed circuit has a quiescent power of 60 . In the current driving range from 100 $mutextrm{A}$ to 50 ㎃, load regulation of 5.6 ㎷ is measured.

  • PDF

CMOS Voltage down converter using the self temperature-compensation techniques (자동 온도 보상 기법을 이용한 CMOS 내부 전원 전압 발생기)

  • Son, Jong-Pil;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.1-7
    • /
    • 2006
  • An on chip voltage down converter (VDC) using the self temperature-compensation techniques is proposed. At a different gate bias voltage, PMOSFET shows different source to drain current characteristic according to the temperature variation. The proposed VDC can reduce its temperature dependency by the source to drain current ratio of two PMOSFET with different gate bias respectively. Proposed circuit is fabricated in Dongbu-anam $0.18{\mu}m$ CMOS process and experimental results show its temperature dependency of $-0.49mV/^{\circ}C$ and external supply dependency of 6mV/V. Total current consumption is only $1.1{\mu}A@2.5V$.

Implementation of Down Converter for Ku-Band Application (Ku 대역용 주파수변환기의 구현)

  • 정동근;김상태;하천수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.527-536
    • /
    • 2000
  • This paper discusses the design of self-oscillating mixer type low noise down converter using the microwave field effect transistor. The mixer is consists of local oscillator in which high stability dielectric resonator and band pass filter to get rid of spurious oscillation at intermediate frequency stage. The microstrip antenna was integrated in the same substrate which generate 12.3GHz and low noise amplifier was also added after antenna using 3 stage of high electron mobility transistors. The output frequency from the local oscillator was chosen as 11.3GHz for the Ku-band application. The measured phase noise was -804dBc/Hz at 100kHz offset frequency, and the gain was 7~12dB in frequency range from 12.0GHz to 12.7GHz. The noise figure at intermediate frequency stage was 64H. The designed model shows less conversion loss than previous diode type mixer. The proposed mixer can be used in digital satellite broadcasting and communication system and expected to use in next generation low noise block design.

  • PDF

Fundamental Study for Ocean Wave Energy Converter Using a Rack-Pinion Gear Based One-way Mechanism (일방향 기구 기반 랙-피니언 기어를 이용한 병진형 파력발전장치에 대한 기초연구)

  • Lee, Junkyoung;Cho, Sungil;Lee, Sehan;Lee, Sangchun;No, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.167.1-167.1
    • /
    • 2011
  • Sustainable energy generation is becoming extremely imperative due to the expected limitations in current energy resources and to reduce pollution. Especially, because of its considerable energy potential, ocean wave energy has been investigated with regard to power generation. To develop large high power wave generator system, it is important to make a small scale proto type and to test that. Thus the objective of this research is to examine the characteristics of a mechanically excited generator system having small power capacity experimentally. The water reservoir (4 m length, 1.5 m width and 1.8 m depth) having a wave maker to make arbitrary height and period of the water wave was made. The proto type consists of three main parts; a buoy, rack-pinion base one-way mechanism, and a wave generator(Fig.1). The water wave is going up and down and the hexahedron buoy is following the wave. The rack gear attached to the buoy is also going up and down to roll the pinion connected to an electric generator then it produces electricity. The experiments were performed with several conditions of water waves, and the power outputs over 30 W could be measured for some conditions. In future works, to achieve higher performance for the proto type, the effects of primary parameters (buoy shape and mass, etc.) on the system efficiency will be identified.

  • PDF

Implementation of Ku-band Low Noise Block for Global Multi-Band Digital Satellite Broadcasting (글로벌형 다중대역 디지털 위성방송용 Ku-대역 LNB 개발)

  • Kim, Sun Hyo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, a Multi-Band Ku-band down converter was designed for reception of multi-band digital satellite broadcasting. The Multi-band low-nose down converter was designed to form four local oscillator frequencies (9.75, 10, 10.75 and 11.3GHz) representing a low phase noise due to VCO-PLL with respect to input signals of 10.7 to 12.75GHz and 3-stage low noise amplifier circuit by broadband noise matching, and to select an one band of intermediate frequency (IF) channels by digital control. The developed low-noise downconverter exhibited the full conversion gain of 64dB, and the noise figure of low-noise amplifier was 0.7dB, the P1dB of output signal 15dBm, and the phase noise -73dBc@100Hz at the band 1 carrier frequency of 9.75GHz. The low noise block downconverter (LNB) for receiving four-band digital satellite broadcasting designed in this paper can be used for satellite broadcasting of vessels navigating international waters.

An E-Band Compact MMIC Single Balanced Diode Mixer for an Up/Down Frequency Converter (E-대역 상/하향 주파수 변환기용 소형 MMIC 단일 평형 다이오드 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.538-544
    • /
    • 2011
  • This paper presents a compact single balanced diode mixer fabricated using a 0.1 ${\mu}M$ GaAs p-HEMT commercial process for an E-band frequency up/down converter. This mixer includes a LO balun employing a Marchand balun with a good RF performance. In order to improve the port-to-port isolation, a high pass filter and a low pass filter are include in this mixer at the RF and IF ports, respectively. The fabricated mixer with a very compact size of 0.58 mm2(0.85 mm${\times}$0.68 mm) exhibits a conversion loss of 8~12 dB and an input P1dB of 1~5 dBm at the LO power of 10 dBm from 71~86 GHz.

Design and Implementation of the Combline Bandpass Filter for the Satellite Transponder using Least-squares Curve-fitting Method (Least-squares Curve-fitting 방법을 이용한 위성중계기용 Combline 대역통과여파기의 설계 및 제작)

  • 정근욱;이재현;박광량;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1485-1492
    • /
    • 1994
  • In this paper, we design and implement the Combline Bandpass Filters for the satellite transponder by using the least-squares curve-fitting method. The Combline Bandpass Filters are located front of the mixer and behind of it, which is the component of down converter. Comparing with the filters which have $\lambda$/4 resonance length. Combline Filter has wide range of stop-band by using $\lambda$/8. So, it is useful to the satellite transponder owing to its low mass and small size. The filters described are realized as coupled rectangular coaxial transmission lines. The choice of this type is due to the ease of machining and wide variations in coupling coefficients rather than the use of the round rod resonators. We determine 800 MHz bandwidths for the combline bandpass filters. By using Chebyshev filter function, we design and implement 4-pole combline filters.

  • PDF