• 제목/요약/키워드: Double pipe

검색결과 172건 처리시간 0.023초

Dual Bore 히트파이프의 열전달 특성에 관한 실험적 연구 (An Experimental Study on Heat Transport Performance of Dual Bore Heat Pipe)

  • 염호열;정상완;서정세;유재복
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.333-338
    • /
    • 2006
  • This study is a research on Dual Bore heat pipe to investigate the ability of heat transport ability, heat resistance and difference of heat transport ability according to the type of heat pipes. As the result of this research, we got several conclusions. Each pipe of Dual Bore in one section has a similar heat transfer capability. In the range between $-20^{\circ}C$ and $60^{\circ}C$ the heat transfer capability is double than single bore which was analyzed by menas of GAP program. Heat resistance is below $0.05^{\circ}C$/W at every point, and it tells aluminum-ammonia heat pipes are proper for satellite.

  • PDF

진공복사관식 집열기의 성능실측 및 최적화 연구 (Study on the Optical Performance of Evacuated Solar Collectors)

  • 천원기;강상훈;김기홍;이용국;장래웅
    • 한국태양에너지학회 논문집
    • /
    • 제21권4호
    • /
    • pp.63-71
    • /
    • 2001
  • This work has been carried out to find the ideal operating conditions for solar vacuum tube collectors which are widely used at present. Various types of solar collectors including a flat plate one were experimentally tested and examined to determine their thermal efficiencies and operating characteristics. Generally, solar vacuum tubes can be classified into two groups according to their design features. Of these, one is characterized by the insertion of a metallic device(such as a finned heat pipe) in an evacuated glass tube for the collection and transportation of solar energy. The other utilizes double glass tubes where the smaller one is contained inside the bigger one and soldered to each other after the small gap between them is evacuated. Both of these solar collectors are designed to minimize convection heat losses by removing the air which is in direct contact with the absorber surface. The performance of the former type can be readily analyzed by applying the relevant correlations developed for flat plate solar collectors. This has been demonstrated in the present study for the case of a solar collector where a heat pipe is inserted in an evacuated tube.

  • PDF

형상변화 에 의한 열교환기 의 열전달 성능 향상 (I) -이중 동심원관내에 와이어 부착시의 열전달 촉진에 대한 실험적 해석- (The Inprovement of the Heat Exchanger Performance by Shape Modification(I)-Experimental Analysis of the Heat Transfer Enhancement by Attached Wires in a Double Pipe Heat Exchanger-)

  • 노승탁;이택식;강신형;김진오
    • 대한기계학회논문집
    • /
    • 제9권1호
    • /
    • pp.71-80
    • /
    • 1985
  • 본 연구에서는 이중관 열교환기의 내관의 바깥 벽면에 반지 형태의 원형돌기 를 부착하여 굵기와 피치를 변화시키면서 압력손실과 열전달계수의 변화를 실험적으로 고찰하였다.

습식 다회선 초음파유량계의 특성평가 연구 (A Study on Performance Characteristics of Wetted-type Multi Path Ultrasonic Flowmeter)

  • 이동근;조용;고재명;박태진;박종호
    • 한국유체기계학회 논문집
    • /
    • 제16권4호
    • /
    • pp.5-9
    • /
    • 2013
  • An experimental investigation has been carried out in order to evaluate characteristics of wetted-type multi-path ultrasonic flowmeters. The multi-path ultrasonic flowmeters were installed at various entrance and exit locations for several cases of pipe fitting(straight, $90^{\circ}$ double elbow) and valve(gate valve, butterfly valve). We measured the flow-rate at each location. The measurement data of test flowmeter were compared with the measured data of reference flowmeter. The uncertainties of reference flowmeter and test flowmeter are 0.3 %, 0.4 %, respectively. The results demonstrate the effects of flowmeter location as well as the measurement errors in flow rate. The distance between the flow disturbance factor and a flowmeter was an important element of the test.

수경재배 온실의 양액냉각시스템 개발 (Development of Nutrient Solution Cooling System in Hydroponic Greenhouse)

  • 남상운;김문기
    • 한국농공학회지
    • /
    • 제36권3호
    • /
    • pp.113-121
    • /
    • 1994
  • Since it is difficult to expect the normal production of plants in greenhouses during hot summer season in Korea, certain provisions on the control of extreme environmental factors in summer should be considered for the year-round cultivation in greenhouses. This study was carried out to find a method to suppress the temperature rising of nutrient solution by cooling, which is able to contribute to the improvement of the plant growth environment in hydroponic greenhouse during hot summer season. A mechanical cooling system using the counter flow type with double pipe was developed for cooling the nutrient solution efficiently. Also the heat transfer characteristics of the system was analysed experimentally and theoretically, and compared with the existing cooling systems of nutrient solution. The cooling capacities of three different Systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipe, were evaluated. The performance of each cooling system was about 41 %, 70% and 81 % of design cooling load in hydroponic greenhouse of 1 ,000m$^2$ on the conditions that the flow rate of ground water was 2m$^3$/hr and the temperature difference between two liquids was 10 ˚C According to the results analysed as above, the cooling system was found to have a satisfactory cooling capability for regions where ground water supply is available. Fer the other regions where ground water supply is restricted, more efficient cooling System should be developed.

  • PDF

2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구 (Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF

유조선의 선체손상 시 기름의 해상유출에 대한 실험적 연구 (An Experimental Study on the Oil Spillage of Damaged Oil Tanker)

  • 김을년;하우일;최익흥
    • 대한조선학회논문집
    • /
    • 제46권4호
    • /
    • pp.398-408
    • /
    • 2009
  • Crude oil carriers or product oil carriers are confronted with sea pollution due to hull damage from various accidents. To reduce the oil spillage of tankers, IMO(International Maritime Organization) and OPA 90(Oil Pollution Act 1990) adopted the hull structures of double skin type. In this study, oil spillage test of the double skin tanker with 1/100 scaled model was carried out under damaged condition due to collision and grounding accidents. A new structural type of oil tanker was also tested with pipe and valve system arranged in double side and single bottom hulls. Their results were compared with that of conventional type double hull on the view point of ship safety and oil spillage.

열사이폰관형 태양열집열기를 주열원으로 하는 하이브리드 난방시스템 성능 평가 (Evaluation on Performance of Hybrid Heating System with Solar Collector of Thermosyphon Tube Type)

  • 전태규;양영준
    • 에너지공학
    • /
    • 제21권4호
    • /
    • pp.356-361
    • /
    • 2012
  • 지열, 풍력, 태양열에너지 등과 같은 신재생에너지 분야에 관한 연구가 활발히 이루어지고 있으나 전체 에너지 중에서 차지하는 비율은 아직 미미하다. 본 논문은 주열원인 열사이폰관형 태양열집열기와 보조열원인 X-L 파이프 보일러장치를 서로 결합한 하이브리드 난방시스템에 관한 연구이다. 특히 새로운 형태의 열사이폰관형 태양열집열기에 관한 성능 평가와 함께 보조열원장치의 성능 및 안전성에 대해 조사하였다. 그 결과, 열사이폰관형 태양열집열기는 이중관형 태양열집열기보다 집열효율이 그 구조적 특성 때문에 최대 20.7% 더 증가하였다. 또한 보조열원장치의 X-L 파이프 내 특수열매체는 순수 물보다 약 20% 더 빠르게 온도가 상승하였으며, X-L 파이프 보일러는 안정성 때문에 팽창압력 해소장치가 필요함을 확인하였다.

파이프하우스의 구조안전에 관한 실험적 연구 (Experimental Studies on the Structural Safety of Pipe-Houses)

  • 김문기;남상운
    • 생물환경조절학회지
    • /
    • 제4권1호
    • /
    • pp.17-24
    • /
    • 1995
  • 본 연구는 파이프하우스의 구조적 안전성을 검토하는데 필요한 기초자료를 구축하기 위하여 실시하였다. 지반에 매입된 파이프의 지점상태를 검토하여 적합한 구조해석 모델을 찾고, 파이프를 말뚝기초로 가정했을 때의 파이프의 지지력 및 인발 저항력을 구하기 위하여 모형 실험을 실시하였으며, 그 결과를 요약하면 다음과 같다. 1. 파이프하우스의 지점상태를 검토해본 결과 단동 하우스에서는 수평 및 연직하중 모두 고정으로, 연동하우스에서는 수평하중 재하시 힌지, 연직 하중 재하시 고정으로 해석하는 것이 실험치에 더 가까운 것으로 나타났다. 2. 지반에 매입된 파이프의 인발저항력은 파이프 직경 및 매입깊이에 따라 논의 연한지반에서는 35-54kg, 밭의 보통지반에서는 61-98kg, 단단한 지반에서는 108-120kg이상으로 나타났으며, 파이프와 흙사이의 주변마찰력은 1.51-4.76t/$m^2$정도의 범위를 보였다. 3. 파이프 직경 및 매입깊이에 따른 기초 지지력은 연한지반의 경우 35-76kg, 보통지반은 88-158kg, 단단한 지반은 131-305kg의 범위를 보였으며, 파이프의 선단지지력은 연한지반 0-22kg, 단단한 지반 22-140kg으로 나타났다. 4. 국내에서 많이 보급되어 있는 대표적인 파이프하우스의 경우, 적설심 30cm 까지는 파이프의 매입깊이가 30cm이면 지지력이 충분하지만 그 이상의 적설심에서는 지반의 종류에 따라 매입깊이를 증가시켜야 하고, 인발저항의 경우도 풍속 30㎧까지는 매입깊이 30cm이면 충분하지만 그 이상의 풍속에 대하여는 매입깊이를 증가시키거나 보강이 필요한 것으로 나타났다.

  • PDF

Efficiency assessment of L-profiles and pipe fore-poling pre-support systems in difficult geological conditions: a case study

  • Elyasi, Ayub;Moradi, Taher;Moharrami, Javad;Parnian, Saeid;Mousazadeh, Akbar;Nasseh, Sepideh
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.1125-1142
    • /
    • 2016
  • Tunneling is one of the challenging tasks in civil engineering because it involves a variety of decision making and engineering judgment based on knowledge and experience. One of the challenges is to construct tunnels in risky areas under shallow overburden. In order to prevent the collapse of ceilings and walls of a large tunnels, in such conditions, either a sequential excavation method (SEM) or ground reinforcing method, or a combination of both, can be utilized. This research deals with the numerical modeling of L-profiles and pipe fore-poling pre-support systems in the adit tunnel in northwestern Iran. The first part of the adit tunnel has been drilled in alluvial material with very weak geotechnical parameters. Despite applying an SEM in constructing this tunnel, analyzing the results of numerical modeling done using FLAC3D, as well as observations during drilling, indicate the tunnel instability. To improve operational safety and to prevent collapse, pre-support systems, including pipe fore-poling and L-profiles were designed and implemented. The results of the numerical modeling coupled with monitoring during operation, as well as the results of instrumentation, indicate the efficacy of both these methods in tunnel collapse prevention. Moreover, the results of modeling using FLAC3D and SECTION BUILDER suggest a double angle with equal legs ($2L100{\times}100{\times}10mm$) in both box profile and tee array as an alternative section to pipe fore-poling system while neither $L80{\times}80{\times}8mm$ nor $2L80{\times}80{\times}8mm$ can sustain the axial and shear stresses exerted on pipe fore-poling system.