• Title/Summary/Keyword: Double pipe

Search Result 171, Processing Time 0.025 seconds

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

An experimental study on heat transfer augmentation in fluidized bed heat exchanger (유동층형(流動層形) 열교환기(熱交換器)에서 전열증진(傳熱增進)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Yoo, Ji-Oh;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.91-106
    • /
    • 1993
  • The purpose of this study was to investigate the enhancement of heat transfer coefficient in double pipe fluidized bed heat exchangers. The inner tube used a smooth tube and a finned tube equipped with longitudinal fins. The heat transfer coefficients between the heated tube and fluidized bed of alumina beads were calculated as a function of fluidized velocity in various particle sizes($d_p$=0.41, 0.54, 0.65, 0.77mm) and static bed heights($H_o$=50, 100, 150, 200, 250mm). The coefficient for finned tube is higher than for smooth tube. And the maximum increasing rate is 7.8 times in smooth tube and 12.9 times in finned tube.

  • PDF

A Comparison with CFD Simulation and Experiment for Steam-methane Reforming Reaction in Double pipe Continuous Reactor (이중관형 연속 반응기에서 수증기-메탄 개질반응의 실험 및 CFD 시뮬레이션)

  • Shin, Dong-Woo;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.226-236
    • /
    • 2013
  • The heat distribution and internal flow from the efficiency of actual reformer and specification variation, using the computer simulation and experiment about the steam methane reforming reaction which uses the high temperature reformer. Reaction model from steam refoemer uses the steam response model developed by Xu & Froment.As result we supposed the chemical react Steam Reforming(SR), Water Gas Shift(WGS), and Direct Steam Reforming(DSR) from the inner high temperature reformer dominates the response has dissimilar response. According to result of steam methane reforming reaction exam using high temperature reformer, we figured out when Steam Carbon Ratio(SCR) increase, number of hydrogen yield increases but methane decreases. When comparing and examining between design with one inlet and two inlet, result came out one inlet design is more outstanding at thermal distribution and internal flow, hydrogen yield in one inlet design than two inlet design.

Data Analysis for Structural Design of Pleurotus Eryngii Cultivation Facilities (큰느타리버섯 재배사의 구조설계용 자료 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • This study was carried out to file up structural design data for optimizing Pleurotus eryngii growing houses. Design data are including current farm status of Pleurotus eryngii growing houses in the aspect of structural configuration as well as environmental conditions to be controlled and maintained inside. A structural analysis was performed for the on-farm structures as well as some structures modified and suggested through field survey and analysis. The results are summarized as follows. According to the results of status analysis, Pleurotus eryngii growing houses were categorized as arch-roofed simple type and sandwich panel type. Though the size of Pleurotus eryngii cultivation facilities were considerably diverse, the basic dimensions of Pleurotus eryngii cultivation facilities showed relatively similar pattern: more or less of 20m of length, $6.6\~7.0m$ of width, $4.6\~5.0m$ of peak height, $1.2\~1.6m$ of bed width, and 4 layers of bed. In the aspect of spatial use of cultivation facilities, suggested models were shown to be mostly reasonable in the aspect of heating and cooling, micro-meteorological stability, land use efficiency per unit floor area, etc.. Especially, the standard models suggested so far were thought to be not efficient in its surface area and spatial volume per unit floor area as well as its uneffective structural design in the area around ceiling. In the results of structural analysis for the models suggested through this study by using those section frames to be found on farms, the panel type structures of both single span and double span were estimated to be over designed, whereas arch-roofed pipe houses were mostly found to be under-designed.

Design and Operation of a Small-Scale Hydrogen Liquefier (소형 수소액화기 설계 및 운전에 관한 연구)

  • Baik, Jong Hoon;Karng, Sarng Woo;Kang, Hyungmook;Garceau, Nathaniel;Kim, Seo Young;Oh, In-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.

Study on Thermal Efficiency according to Configuration Change and Contact Resistance of Solar Collector with Single Evacuated Tube-type (단일진공관 태양열집열기의 형상변화 및 접촉저항에 따른 집열효율 연구)

  • Choi, Bo-Won;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.189-195
    • /
    • 2014
  • The use of solar energy among renewable energy tends to increase because of its infinity and cleanness of resources. Even though the consumption rate of solar energy in our country is still low, however, in recent years, the research for solar energy have been widely conducted due to policy support of government. This study was performed to investigate the efficiency of heat collection using solar collector with single evacuated tube-type. As the results, the temperature of radiation fin for solar collector with single evacuated tube-type was lower in spite of high temperature of heat pipe compared that of double evacuated tube-type. In order to increase the efficiency of heat collection, it was confirmed that the loss of heat collection due to contact resistance as well as performance improvement for solar collector should be decreased.

Performance of Heat Pump Water Heater with Dual Condenser (2단 응축 히트펌프 온수시스템의 사이클 해석 및 성능분석)

  • Ryou, Y.S.;Kim, Y.J.;Kang, G.C.;Paek, Y.;Yun, J.H.;Kang, Y.G.;Lee, H.M.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.423-429
    • /
    • 2006
  • The heat pump water heater developed in this research consisted of one evaporator, one compressor, 1st condenser, 2nd condenser, one expansion valve, one water tank, one recirculation circuit and etc. The performance of heat pump water heater was tested and analyzed. The quantities of output water changed linearly from 2380 to $660{\ell}/h$, and the output water temperature changed curvedly from 29.9 to $44.5^{\circ}C$ when the opening rate of recirculation valve changed from 0 to 100%. The COP of heat pump water heater increased from 3.0 to 3.8 when the quantities of output water changed from 660 to $2380{\ell}/h$. When the temperature distributions of water tank were measured during 50 minutes after turning on the heat pump, the temperature stratification by the level appeared apparently. When the inlet water temperature changed from 30 to$50^{\circ}C$, the output energy of heat pump hardly changed. The surface area of double pipe heat exchanger changed from 0.429 to $6.254m^2$ when the compressor capacity increased from 1.0 to 50.0 PS.

Evaporation kent transfer characteristics of R-290 and R-600a in the horizontal tubes (수평관내 R-290과 R-600a의 증발 열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC(e.g. R290 and R600a), R-22 as a HCFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07 mm and 6.54 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4\;kg/m^2s$ and cooling capacity of $0.95{\sim}10.1\;kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of R-290 and R-600a was higher value than that of R-22. In comparison with R-22, the evaporation heat transfer coefficient of R-290 and 600a is approximately $56.7{\sim}70.1$ and $46.6{\sim}59.7%$ higher, respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well matched with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Heat Transfer Characteristics of R-1270 using 12.7mm Inner Fin Tube (12.7mm 내면핀관을 이용한 R-1270의 열전달 특성)

  • Yoon, Jung-In;Seong, Gwang-Hoon;Shim, Gyu-Jin;Jin, Byoung-Ju;Baek, Seung-Moon;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.534-541
    • /
    • 2008
  • This paper deals with the heat transfer characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for evaporating. The experimental apparatus has been set-up as conventional vapor compression type refrigeration and air-conditioning system. The test section is a horizontal double pipe heat exchanger. Evaporating heat transfer measurements were performed for smooth tube with the outer diameters of 12.70, 9.52 and 6.35 mm and micro-fin tube 12.70 mm, respectively. For the smooth and micro-fin tubes measured in this study, the evaporating heat transfer coefficient was enhanced according to the increase of the mass flux and decrease of the tube diameter. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Also, the evaporating heat transfer coefficients of R-22 in the tube diameter of the 12.70 mm smooth and micro-fin tube were compared. Generally, the local heat transfer coefficients for both types of tubes increased with an increase of the mass flux. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 1.9 to 2.7 in all experimental conditions.

A Study on the Thermal-Hydraulic Characteristics of Molten Salt in Minichannels of an Intermediate Heat Exchanger for a Very High Temperature Reactor (VHTR) (초고온원자로 중간열교환기 미니챈널에서의 Molten Salt 열수력 특성 연구)

  • Jeong, Hui-Seong;Hwang, In-Seon;Bang, Kwang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1093-1099
    • /
    • 2010
  • For Very High Temperature Reactors (VHTR), the designs of the Intermediate Heat Transport Loop (IHTL) and the Intermediate Heat Exchanger (IHX) are particularly difficult because of the high-temperature operation (up to $950^{\circ}C$). In this study, Flinak molten salt, a eutectic mixture of LiF, NaF, and KF (46.5:11.5:42.0 mole %) is considered as the heat transporting fluid in the IHTL. To evaluate the flow and heat transfer performance of the Flinak molten salt in small channels with hydraulic diameters in the millimeter range, a double-pipe heat exchanger was constructed using small-diameter tubes for the heat exchange between the Flinak and the gas flow. The experimental data showed that, for laminar Flinak flow, the measured friction factors were close to the 64/Re curve and the Nusselt numbers were generally between 3.66 and 4.36.