• Title/Summary/Keyword: Double Facade

Search Result 57, Processing Time 0.026 seconds

Study on Application of Shaft Box type Balcony for Improvement of Ventilation Performance in Apartment (공동주택의 환기성능 개선을 위한 Shaft Box형 발코니의 적용성 검토)

  • Roh, Ji-Woong;Kim, Gon
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, because of the continuous rise of international oil price, energy saving is strongly demanding. So, Ecological technics of architecture such as use of natural energy have been actively explored in the field of building. In the method of utilizing natural energy, the key point is to saving energy effectively as not lowering the comfort of indoor environment, various systems investigated. Many papers about double skin facade system have been reported, it is announced broadly that the system is very effective in improvement of natural ventilation and indoor thermal environment, and also protecting outdoor sound. The shaft box facade is a special form of box window construction. It consists of a system of box windows with continuous vertical shafts that extend over a number of stories to create a stack effect. The facade layout consists of an alternation of box windows and vertical shaft segments. This research investigated the natural ventilation performance of shaft box type balcony which conform the shaft box type double skin to the exiting balcony construction. First, analyzed various types of exiting apartments, proto-type was decided. By using virtual environment Program, modeling the proto-type, compared the contribution of air temperature and the effect of outdoor air cooling. by this research, we confirmed that shaft box type balcony had many possibility for improvement of indoor environment.

A Comparative Experimental Study on Thermal Performance of Box-typed Double Skin and Curtain Wall in Cooling Period (박스형 이중외피와 커튼월의 냉방기 열적성능에 관한 비교실험 연구)

  • Park, Chang-Young;Lee, Keon-Ho;Yoon, Yong-Sang;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2007
  • The annual mean temperature of South Korea has risen by $1.3^{\circ}C$ for last 100 years by urbanization and industrialization. Especially, the frequency of unusual hot weather in summer increases for a long time and the frequency of unusual cold weather in winter clearly decreases. In recently, The considerable portion of curtain wall system is appled to building skin in domestic. As related to this, the Korea Institute of Construction Technology devised the box typed double skin facade(It is occasionally called as FDFS : Functional Double Facade System) as an alternative that reflects the distinctive local climate and saves cooling energy. Two mock-ups($49m^*4.9m$) applied to single skin(curtain wall) and double skin each were monitored under the outdoor condition. Therefore, the characteristics of natural ventilation and cooling energy consumption of each window had been analyzed in real time. The results of this study are summarized as follow, Analysis of the experiment on an air conditioner: the indoor temperature of the chamber with FDFS is lower than that of the chamber with single skin facades by $3{\sim}6$ degrees(C). A temperature variation of about $1{\sim}2$ degrees between the 0.2m and 1.7m height of the mock-up occurs in FDFS, while that of about maximum 7 degrees occurs in single skin facade at noon with abundant intensity of solar accident. Also, 67 percent of energy consumption for air conditioning has been saved.

Study on the Application of PV System for Apartment Buildings (공동주택을 위한 PV시스템 적용에 관한 연구)

  • Yi, So-Mi;Noh, Ji-Hee;Lee, Yong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.276-279
    • /
    • 2007
  • This study aims to present the application of pv system for apartment buildings. Regarding to the domestic housing politics to improve residing environment and effective use of country land, apartment buildings have been constructed since early of 1790's. Now apartment is taking over 50% out of entire housing in Korea. PV System of apartment buildings has been developed periodically and recently gable roof or canopy is popular which pv installation is more favorable. For balcony part with double skin facade sassy window, it has a preferable condition to install on the wall depending on the window direction. In case of superhigh floor apartment buildings where facade is mostly double skin facade of curtain wall system, pv module can replace the traditional curtain wall and will reduce architectural materials and obtain various out look design thereof. So, the purpose of this research is a basic study for clean energy source and present to applicability of pv systems for apartment buildings in preliminary design step.

  • PDF

Evaluation of Seasonal Daylighting Performance according to Window Compositions of Double Skin Facades (이중외피 창호특성에 따른 계절별 실내 주광환경 평가)

  • Lim, Tae-Sub;Kang, Seung-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • Double skin façade is known that several features affected the building energy and daylighting performance. That is why the envelope is able to consist of all architectural materials such as glass, aluminum, wood and insulation for vision of residents and workers in buildings. Its specifications is very diverse according to the building designers and building owners. In recent times, visual environment became a major focus and resulted in the development of cutting edge engineering of diverse glazing systems and shading devices by growing interests of friendly environment. Thus this research has evaluated the fluctuations of interior lighting and atmospheric conditions based on double skin facade systems. Especially in terms of daylighting environment as dependent on solar variations, this research provides quantitative analysis of interior lighting conditions and how it affects the living conditions as well as improve the design of interior spaces.

A Study on Application of Shaft-box Type Double Skin to Apartment Building (공동주택에 대한 Shaft Box형 이중외피의 적용에 관한 연구)

  • Roh, Ji Wooung
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • The balcony of our apartment building consists of unique construction similar to double skin. It is announced broadly that double skin is very effective system in improvement of natural ventilation and indoor thermal environment, and outdoor sound protection. So, for the improvement of indoor climate and energy saving, many peoples studied about environmental performance of our balcony construction. This study focus on shaft box facade, special form of box window construction. It consists of a system of box window with continuous vertical shafts that extend over a number of stories to create a stack effect. Proto-type was decided by analyzing various types of exiting apartments. Shaft box type balcony was created by setting up shaft space at a part of balcony. Air flow and contribution of air temperature were simulated, performance of shaft box type balcony was compared with existing balcony. Finally, we confirmed that shaft box type balcony has many possibility for improvement of indoor environment.

Theoretical Review and Experiment on Applicability of Double Skin Facade Ventilated by Fans (팬을 부착한 이중외피의 이론적 검토 및 적용성에 대한 실험 연구)

  • Lim, Ji-Hye;Sohn, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.605-613
    • /
    • 2010
  • Double skin facade(DSF) ventilated by fans consists of a normal external and an internal envelope. In this glass layer, the installed fan replaces an air inlet for the control of air flow through the cavity. The purpose of this paper is to investigate physical theory and to analyze the applicability of fans installed in a DSF. The experiment was conducted in 2 rooms. One room has a DSF with installed fans and the other one has a typical window. The room ventilated through a DSF which fans are installed was always kept warmer than the other room, ventilated directly from the outdoors. The average increase of the supplied air temperature through the DSF ventilated by fans was $6.54^{\circ}C$ at 78CMH, $6.2^{\circ}C$ at 95CMH, and $3.7^{\circ}C$ at 120CMH. As a result, the DSF with installed fans was appropriate for installation in rooms. It supplies outdoor fresh air heated through a cavity and ventilates a constant air volume.

A Study on the Facade Design Using Scissors System (시저스 시스템을 적용한 파사드 디자인에 관한 연구)

  • Kim, Seung-Deog;Jung, HyeWon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2017
  • Recently, the interest in the smart buildings is increasing in the architecture field. Among them, a research of facade design using a transformable system that can adjust the effect of the external environment is in progress. One of a typical example of the deployable system is a Scissors system that can change shape by using the geometric conditions of a unit member. Scissors system is a high-tech structural system which can construct the deployable plan and curved space by using the SLE (Scissors-Like Element) consisted of two Bar and Pivot. If the facade is designed by applying Scissors system, it is possible to maximize the performance and aesthetic effect of the structure by using a shape change of the line member. This paper presents a study of deployable facade design applying hybrid-typed Scissors system. A new deployable pattern of facade design is developed by combining Angulated Scissors system and tessellation pattern. Applying the deployable pattern a double skin construction method which is to add an outer wall for design, it raises three dimensional effects and can maximize the artistic essence of the change in shape upon deployment.

A Study on the Energy Load of the Curtain Wall Buildings according to the Application of the Double-skin Facade System (커튼월 건축물의 이중외피 시스템 적용에 따른 에너지 부하량 검토)

  • Li, Bai-Hong;Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Kim, Dong-Wan;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.99-104
    • /
    • 2016
  • In this study, we researched the energy load according to the change of the inner window area ratio, the distance of the air gap and the azimuth of the curtain wall building, which installed the multistory double-skin facade(DSF). and we compared the results with the no double-skin facade situation as follows. With the DSF, it is better than other case, when the window area ratio is 40% and the air gap is 1.2m on the west, south-45-west, south-45-east and east. And it's best when the window area ratio is 40% and the air gap is 0.4m on the south. And on the east or south-45-east, the window area ratio is 40% and the air gap is 1.2m is better than other case with the DSF. On south, it is best when the window area ratio is 100% without DSF. On the south-45-west or west, it is best when the window area ratio is 40% without the DSF.

An Experimental Study on Indoor Thermal Characteristics in accordance with the Use of Windows and Blinds in Double Skin Facade in Summer (이중외피에서 창문 개폐 및 블라인드 설치에 따른 하절기 실내 열환경 특성 변화 실험 연구)

  • Kim, Dong-Kyun;Yoon, Kap-Chun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 2011
  • This paper is focused on the effect of indoor temperature rise according to the use of windows and blinds in double skin facade in summer. For the experiment, we set up the mock-up of double skin facede and measuring temperature and solar radiation. Total 7 cases were used for measuring solar transmittance and indoor temperature rise. When the venetian blind was not installed, solar transmittance was 44.5%, and solar transmittance for the case that installed the venetian blind (angle 0) was 22.5%. Cases that opened inner and outdoor windows for ventilation showed lower indoor temperature rise than cases with closed windows. In addition, Case 5 (opened inner and outdoor windows with the venetian blind (angle 0) to reduce solar transmittance) indicated lower indoor temperature rise than Case 3(opened inner and outdoor windows). Consequently, Case 5 which uses inner and outdoor window for ventilation and venetian blind to reduce solar transmittance is the most effective way to reduce indoor temperature rise among all cases tested in this research.

A study on the application of BIPV to the Apartment Building (BIPV의 아파트 건물 적용 가능성에 대한 연구)

  • Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 2006
  • Regarding to the Domestic housing politics to improve residing environment and effective use of country land, apartment buildings have been constructed since early of 1970s. Now apartment is taking over 50% out of entire housing in Korea. In the view point of PV application to the apartment, PV has amny advantages because of the wideness of out-walls and high floors building in APT. Therefore, if APT could use the electricity produced by BIPV, we can solve more easily environment and energy problems caused by housing. The research conclusion by analysing conditions and application method to introduce BIPV application to APT in near future is as below. -The out look of APT has been developed periodically and recently gable roof or canopy is popular which PV installation is more favorable. -For Balcony part with double skin facade sassy window, It has a preferable condition to install on the wall depending on the window direction. -In case of shorter distance between buildings due to high ratio of outside measurement, it is more desirable to install PV on the roof than on the wall of Apartment by considering low solar altitude. -Also depending on the direction of APT building, it is more effective and productive in electricity in the broad surface of side wall of APT. -In case of superhigh floor APT where facade system is mostly double skin facade of curtain wall system, PV module can replace the traditional curtain wall and will reduce architectural materials and obtain various out look design thereof.