• Title/Summary/Keyword: Dosage strength

Search Result 222, Processing Time 0.026 seconds

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

An Experimental Study on the Quality of Concrete with Municipal Solid Waste Incineration Ash (쓰레기 소각재 사용 콘크리트의 품질특성에 대한 실험적 연구)

  • Kim, Jae-Woo;Choi, Jae-Jin;Moon, Dae-Joong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.335-344
    • /
    • 2014
  • The Quality of municipal solid waste incineration ash (incineration ash) was analyzed for the purpose of the reusing for concrete material. The folwability and strength properties of concrete mixed with incinerator ash were investigated. CaO component was included more than 50% in chemical component of incinerator ash, mean size of 50% accumulated particle distribution of incinerator ash was about $25{\mu}m$. Particle shape of incinerator ash ($IA_1$) was massed the round shape with fine particle, particle shape of incinerator ash ($IA_2$) was piled up the sheet shape according to manufacture procedure. The Quality of concrete was effected by use of incinerator ash. When the incinerator Ash ($IA_2$) was used, slum of concrete was increased and dosage of high range water reducing agent was reduced. However, strength development of concrete was decreased. Dosage of high range water reducing agent was increased by combined use of incinerator ash ($IA_2$) and diatomite powder, but strength development of concrete was improved. Ratio of compressive strength and tensile strength was in the range 85%~105% of CEB-FIP model code.

Microstructure and Strength of Class F Fly Ash based Geopolymer Containing Sodium Sulfate as an Additive (황산나트륨 첨가제에 따른 플라이애시 기반 지오폴리머의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.443-450
    • /
    • 2015
  • This paper presents an investigation of the mechanical and microstructural properties of Class F fly ash based geopolymer containing sodium sulfate as an additive. Sodium sulfate was used as an chemical additive at the dosage levels of 0, 2, 4, and 6wt% of fly ash. Sodium hydroxide and sodium silicate solutions were used to activate fly ash. The compressive strengths of geopolymer pastes were measured at the age of 28 days. The microstructures of the geopolymer pastes were examined using XRD, MIP and SEM tests. The additions of 2wt% and 4wt% sodium sulfate produced geopolymers with high strength, while increasing the dosage of levels to 6% resulted in almost no changes in strength, comparing with the control geopolymer. The optimum increase in strength was obtained with the addition of 4wt% sodium sulfate. As the amount of sodium sulfate is increased, no additional crystalline phase was detected and no change of amorphous phase indicated despite the change in the strength development. The increase in the strength was due to the change of pore size distribution in samples. As addition of sodium sulfate altered the morphologies of reactive productions and Si/Al ratios of the reaction products, the strengths were thus affected. It was found that the strengths of geopolymer were larger for lower Si/Al ratios of reaction products formed in samples. The optimal amount of sodium sulfate in the fly ash based geopolymer helps to improve mechanical properties of the geopolymer, on the other hand, the high percentage of sodium sulfate could exist as an impurity in the geopolymer and hinder the geopolymer reaction.

The Properties of High Flowing Cement Mortar with the Content of Limestone Grain (석회석 미분말의 함유율 변화에 따른 고유동 모르터의 특성)

  • 조중동;전충근;조병영;장기영;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.605-608
    • /
    • 1999
  • In this paper, the application of limestone grain, which produced by being gathered electrically in the process of manufacturing of cement, to high fluidity concrete are investigated. High fluidity mortar is used for this experiment. According to the experimental results, especially, high viscosity and the loss of air content are accomplished by applying limestone grain as the partial substitution of fine aggregates. In case of hardened mortar, high strength development at early age can be achieved by using limestone grain. But excessive dosage of limestone grain can cause high drying shrinkage.

  • PDF

Factors on the Physical Properties of Dry Ready Mixed Cement Mortar for Finishing (마감용 건조모르타르의 물성에 미치는 각 요인의 영향)

  • 정재동;김원기;이영진;송용순;황재현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.138-143
    • /
    • 1993
  • The objective of this report is to investigate the effect of factors like the fineness modulus of sand , content of fly ash and slaked lime, binder/sand ratio, admixture dosage on the physical properties of mortar for finishing. The analysis was performed with design of experiment and air content, water retention and compressive strength were measured.

  • PDF

Handsheet Property Changes by Internal Addition of Surface Strength Agent (표면강도 향상제 내첨에 따른 수초지 특성 변화)

  • Lim, Jong-Hyck;Jung, Chul-Hun;Chae, Hee-Jae;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.41-45
    • /
    • 2010
  • This study was performed to evaluate the effect of paper property changes by internal addition of surface strength agent on printability. Advances in printing technique has required the development of paper qualities in many aspects. Basically paper structure is composed of hydrogen bonds which induce many problems in high speed printing machine because of weak bonding strength. One of the important printing problems is surface picking when mechanical pulp or recycled pulp are used. It was caused by the ink-stained blanket in printing process because accumulations of pollutant in white water and other elements which are bonded weakly or do not have hydrogen bonds. Debris at paper surface adheres to blanket which deteriorates printing efficiency and causes various problems. To complement these problems, Pennocel 5137 of polysaccharide structure was used as an agent to improve paper's surface property, strength and printability. Paper surface picking was analyzed by RI-1 test. As the dosage amount increased tensile strength, fiber bonding strength and ZDT strength were improved. Further more formation, smoothness and surface picking resistance were improved. It was confirmed that when adding polysaccharide structure polymers to improve surface strength such as surface picking resistance, it was also possible to improve tensile strength, fiber bonding strength, formation and smoothness.

Effect of porosity on frost resistance of Portland cement pervious concrete

  • Zhang, Wuman;Li, Honghe;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • Portland cement pervious concrete (PCPC) is an effective pavement material to solve or reduce the urban waterlogging problems. The Mechanical properties, the permeability, the abrasion resistance and the frost resistance of PCPC without fine aggregate were investigated. The increase of porosity was achieved by fixing the dosage of coarse aggregate and reducing the amount of cement paste. The results show that the compressive strength and the flexural strength of PCPC decrease with the increase of porosity. The permeability coefficient and the wear loss of PCPC increase with the increase of the porosity. The compressive strength and the flexural strength of PCPC subjected to 25 freeze-thaw cycles are reduced by 13.7%-17.8% and 10.6%-18.3%, respectively. For PCPC subjected to the same freeze-thaw cycles, the mass loss firstly increases and then decreases with the increase of the porosity. The relative dynamic modulus elasticity decreases with the increase of freeze-thaw cycles. And the lower the PCPC porosity is, the more obvious the dynamic modulus elasticity decreases.

A Study on the Engineering Properties of Grout Materials Using a Magnetic Field Treated Water (자화수를 사용한 주입재의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Park, Doo-Hee;Yang, Hyung-Chil;Jung, Jong-Ju;Lee, Sang-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1195-1203
    • /
    • 2006
  • Water that is treated by passing through a magnetic field of certain strength is called Magnetic Field Treated Water(MFTW). Previous research indicate that use of MFTW can save 5% of cement dosage, decrease bleeding of concrete, and improve resistance to freezing. The reason why MFTW can improve characteristics of concrete can be explained by the molecular structure of water. Magnetic force can break apart water clusters into single molecules or smaller ones, therefore, the activity of water is improved. While hydration of cement particles is in progress, the MFTW can penetrate the core region of cement particles more easily. Hence, hydration takes place more efficiently which in turn improves concrete compressive strength. Test results demonstrate that the compressive strength of the sodium silicate cement grout homogel increases by approximately 20 - 50% by using the MFTW.

  • PDF