• Title/Summary/Keyword: Doppler velocity log

Search Result 45, Processing Time 0.029 seconds

A study on the implementation of multi-velocity log system using ultrasonic doppler effect (초음파 도플러 효과를 이용한 선박 종합 속도 측정 시스템 구현에 관한연구)

  • 류점수;신동우;민경선;김영길;강동균;임종곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.38-46
    • /
    • 1996
  • In this paper, a multi-velocity log system which uses ultrasonic pulsed doppler signal is developed. The output of the system is the absoluted velcocity of the ship. By using digitral signal processing, we get the vector velocity which displays the ship's speed about fore, aft, port and starboard. And this system give us the information about depth. This multi-velocity system has a large merit that is bottom and water track velocity. In addition, this has the high accuracy and can measure the water-depth according to the deep mode. And the fish finder, echo sounder or docking system will be made by applying the speed log system.

  • PDF

Underwater Hybrid Navigation Algorithm Based on an Inertial Sensor and a Doppler Velocity Log Using an Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 알고리듬)

  • 이종무;이판묵;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

Different Types of Active Region EUV Bright Points by Hinode/EIS

  • Lee, Kyoung-Sun;Moon, Yong-Jae;Kim, Su-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.28.2-28.2
    • /
    • 2010
  • We have investigated seven Extreme-Ultraviolet (EUV) bright points in the active region (AR 10926) on 2006 December 2 by the EUV imaging spectrometer (EIS) onboard Hinode spacecraft. We determined their Doppler velocities and non-thermal velocities from 15 EUV spectral lines (log T=4.7-7.2) by fitting each line profile to a Gaussian function. We present the Doppler velocity map as a function of temperature which corresponds to a different height. As a result, these active region bright points show two different types of characteristics. Type 1 bright point shows a systematic increase of Doppler velocity from -68 km/s (blue shift) at log T=4.7 to 27 km/s (red shift) at log T=6.7, while type 2 bright points have Doppler velocities in the range of -20 km/s and 20 km/s. Using MDI magnetograms, we found that only type 1 bright point was associated with the canceling magnetic feature at the rate of $2.4{\times}10^{18}$ Mx/hour. When assuming that these bright points are caused by magnetic reconnection and the Doppler shift indicates reconnection out flow, the pattern of the Doppler shift implies that type 1 bright point should be related to low atmosphere magnetic reconnection. We also determined electron densities from line ratio as well as temperatures from emission measure loci using CHIANTI atomic database. The electron densities of all bright points are comparable to typical values of active regions (log Ne=9.9-10.4). For the temperature analysis, the emission loci plots indicate that these bright points should not be isothermal though background is isothermal. The DEM analysis also show that while the background has a single peak distribution (isothermal), the EUV bright points, double peak distributions.

  • PDF

Phase Doppler Measurements and Probability Density Functions in Liquid Fuel Spray (연료분무의 위상도플러 측정과 확률밀도함수의 도출)

  • 구자예
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1039-1049
    • /
    • 1994
  • The intermitternt and transient fuel spray have been investigated from the simultaneous measurement of droplet sizes and velocities by using Phase/Doppler Particle Analyzer(PDPA). Measurement have been done on the spray axis and at the edge of the spray near nozzle at various gas-to-liquid density ratios(.rho./sub g//.rho./sub l/) that ranges from those found in free atmospheric jets to conditions typical of diesel engines. Probability density distributions of the droplet size and velocity were obtained from raw data and mathematical probability density functions which can fit the experimental distribations were extracted using the principle of maximum likelihood. In the near nozzle region on the spray axis, droplet sizes ranged from the lower limit of the measurement system to the order of nozzle diameter for all (.rho./sub g/ /.rho./sub l/) and droplet sizes tended to be small on the spray edge. At the edge of spray, average droplet velocity peaked during needle opening and needle closing. The rms intensity is greatly incresed as the radial distance from the nozzle is increased. The probability density function which can best fit the physical breakage process such as breakup of fuel drops is exponecially decreasing log-hypebolic function with 4 parameters.

Broad-Band Underwater Acoustic Transducer for Doppler Velocity Log (도플러 속도계(DVL)를 위한 광대역 수중 음향 트랜스듀서)

  • Yun, Cheol-Ho;Lee, Yeoung-Pil;Ko, Nak Yong;Moon, Yong-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.755-759
    • /
    • 2013
  • A broad-band underwater acoustic transducer that uses thickness vibration mode, derived from a disk type piezoelectric ceramic, has been proposed and designed for DVL (Doppler Velocity Log). Three different types of acoustic transducer were evaluated with respect to the transmitting voltage response, receiving voltage sensitivity and bandwidth of the transducer. The effect of the acoustic impedance matching layer and backing layer is discussed. The results demonstrated that three matching layer with lossy backing layer is the best configuration for underwater transducer. The trial underwater acoustic transducer with three matching layer has a frequency bandwidth of 55%, maximum transmitting voltage response of 200 dB and a maximum receiving voltage sensitivity of -187.3 dB.

A Study on the accuracy of speed measuring system by the Doppler effect -The error of speed single beam Doppler log over the ground by various trim- (Doppler 효과(效果)에 의한 속도계측장치(速力計測裝置)의 정도(精度)에 관(關)한 연구(硏究) -Single beam Doppler log의 트림 변화에 따른 대지속력(對地速力) 오차(誤差)-)

  • Kim, Koang-Hong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.179-187
    • /
    • 1997
  • Doppler log and current meter are based on the measurment of the doppler effect. Ship's speed over the ground measured by means of doppler log effect of underwater ultrasonic intends to get infulence by the difference of sound velocity, the ship's course, the sea bottom inclination, the trim and tranducer installation etc. This paper investigated on the error of speed over the ground by change of the trim comparing the real speed obtained by the mile post with the speed of single beam type doppler log on the trainning ship Kyeongyangho. The results are as follows ; 1. Indicating speed of doppler log is very much greatly influenced on variation of trim, but the real speed is less affected variation by trim. 2. The range of variation and error of speed over ground are smallest when ship's trim is 2.15m trim by the stern.

  • PDF

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

Reduced Error Model for Integrated Navigation of Unmanned Autonomous Underwater Vehicle (무인자율수중운동체의 보정항법을 위한 축소된 오차 모델)

  • Park, Yong-Gonjong;Kang, Chulwoo;Lee, Dal Ho;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.584-591
    • /
    • 2014
  • This paper presents a novel aided navigation method for AUV (Autonomous Underwater Vehicles). The navigation system for AUV includes several sensors such as IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and depth sensor. In general, the $13^{th}$ order INS error model, which includes depth error, velocity error, attitude error, and the accelerometer and gyroscope biases as state variables is used with measurements from DVL and depth sensors. However, the model may degrade the estimation performance of the heading state. Therefore, the $11^{th}$ INS error model is proposed. Its validity is verified by using a degree of observability and analyzing steady state error. The performance of the proposed model is shown by the computer simulation. The results show that the performance of the reduced $11^{th}$ order error model is better than that of the conventional $13^{th}$ order error model.

A Hybrid Navigation System for Underwater Unmanned Vehicles, Using a Range Sonar (초음파 거리계를 이용한 무인잠수정의 수중 복합 항법시스템)

  • LEE PAN-MOOK;JEON BONG-HWAN;KIM SEA-MOON;LEE CHONG-MOO;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.33-39
    • /
    • 2004
  • This paper presents a hybrid underwater navigation system for unmanned underwater vehicles, using an additional range sonar, where the navigation system is based on inertial and Doppler velocity sensors. Conventional underwater navigation systems are generally based on an inertial measurement unit (IMU) and a Doppler velocity log (DVL), accompanying a magnetic compass and a depth sensor. Although the conventional navigation systems update the bias errors of inertial sensors and the scale effects of DVL, the estimated position slowly drifts as time passes. This paper proposes a measurement model that uses the range sonar to improve the performance of the IMU-DVL navigation system, for extended operation of underwater vehicles. The proposed navigation model includes the bias errors of IMU, the scale effects of VL, and the bias error of the range sonar. An extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation, when the external measurements are available. To illustrate the effectiveness of the hybrid navigation system, simulations were conducted with the 6-d.o.f. equations of motion of an AUV in lawn-mowing survey mode.

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2003
  • This paper presents considerations on the results of the rotating arm test, which was carried out for assessment of an hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit(IMU), an ultra-short baseline(USBL) acoustic navigation sensor and a doppler velocity log(DVL) accompanying a magnetic compass. A navigational systemmodel is derived to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters are 25 in the order. The extended Kalman filter was used to propagate the error covariance, The rotating arm tests were carried out in the Ocean Engineering Basin of KRISO, to generate circular motion. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.