• Title/Summary/Keyword: Doppler spectra

Search Result 76, Processing Time 0.027 seconds

Broad Wings around Hα and Hβ in the S-type Symbiotic Stars

  • Chang, Seok-Jun;Lee, Hee-Won;Lee, Ho-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.86.4-87
    • /
    • 2017
  • Symbiotic stars are binary systems composed of a hot white dwarf and a mass losing giant. Many symbiotic stars are known to exhibit broad wings around Balmer emission line. We show high resolution spectra of S-type symbiotic stars, Z Andromedae and AG Draconis, obtained with the ESPaDOnS and the 3.6 m Canada-France-Hawaii Telescope, in which we find prominent broad wings around Balmer lines. We adopt Monte-Carlo technique to consider two types of wing formation mechanisms, which are Thomson scattering by free electron in H II region and Raman scattering by atomic hydrogen in H I region. We find that Thomson wings of $H{\alpha}$ and $H{\beta}$ have the same widths in the Doppler space due to the cross section independent of wavelength. In contrast, Raman $H{\alpha}$ wings are 3 times broader widths than $H{\beta}$ counterparts, which is attributed to the different cross sections and branching ratios. Our CFHT data show that $H{\alpha}$ wings of Z Andromedae and AG Draconis are broader than $H{\beta}$ wings, lending strong support to the Raman scattering origin of Balmer wings in these objects.

  • PDF

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

Removal of Radio Frequency Interference of 1.29 GHz Doppler Wind Profiler Radar (1.29 GHz 도플러 윈드프로파일러 스펙트럼에서 전파 간섭 신호 제거)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.393-398
    • /
    • 2022
  • During the test operation period of the wind profiler prototype, radio frequency interference (RFI) contamination occurred in the spectrum. The reference of the RFI that removed the algorithm appearing in the wind profiler spectrum were investigated, and a new algorithm was developed to remove the RFI. First, it was filtered with a threshold value of 0.1 m/s of the spectral width, and the range of the number of gates with the same radial velocity was determined according to whether the beam was a vertical beam or an oblique beam. RFI contamination was removed through filtering and scanning of non-weather signals, and the continuity of wind vectors calculated from the improved spectral radial velocity was verified.

Spatial Filtering based STAP Algorithm for Clutter plus Jamming Suppression (재머와 클러터 억압을 위한 공간 필터링 기반 STAP 알고리즘)

  • Hoon-Gee, Yang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.524-530
    • /
    • 2022
  • When radar return contains strong jammers along with ground clutter echo, a STAP(space-time adaptive processing) algorithms tend to suppress jammer components more severely than it does the clutter. This hinders moving target detection in that the target echo is apt to be buried by clutter echo. This paper presents a two-step STAP algorithm in which the pre-suppression of jammer by the spatial filtering is applied, prior to applying the STAP algorithm. We propose how to find the coefficients of the spatial filter and show that the spatial filtering barely alter the spectra of the target and the clutter echo, having only to suppress the jammers. Finally, we simulate a STAP scenario with strong jammers and show the proposed algorithm can improve STAP performance.

The Defect Characterization of Luminescence Thin Film by the Positron Annihilation Spectroscopy (양전자 소멸 측정을 이용한 발광 박막 구조 결함 특성)

  • Lee, Kwon Hee;Bae, Suk Hwan;Lee, Chong Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.250-256
    • /
    • 2013
  • It is described that the proton beam induces micro-size defects and electronic deep levels in luminescence Thin Film. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) and Positron lifetime Spectroscopy were applied to study of characteristics of a poly crystal samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S-parameter value. The samples were exposed by 3.0 MeV proton beams with the intensities ranging between 0 to ${\sim}10^{14}$ particles. The S-parameter values decreased as increased the proton beam, that indicates the protons trapped in vacancies. Lifetime ${\tau}_1$ shows that positrons are trapped in mono vacancies. Lifetime ${\tau}_2$ is not changed according to proton irradiation that indicate the cluster vacancies of the grain structure.

The Characterization of MgB2 Thin Film by Slow Positron Annihilation Spectroscopy (저에너지 양전자 소멸 분광법을 이용한 MgB2 박막 구조 특성)

  • Lee, C.Y.;Kang, W.N.;Nagai, Y.;Inoue, K.;Hasegawa, M.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.160-164
    • /
    • 2008
  • The Characterization of $MgB_2$ Thin Film by Slow Positron Annihilation Spectroscopy Enhance signal-to-noise ratio, slow positron coincidence Doppler Broadening method has been applied to study of characteristics of $MgB_2$ superconductor film, which were performed at 30 K and 50 K sample temperature near Tc of it. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The S-parameter values were increased then decreased while the positron implantation energies were increasing, that indicated the diffusion into the samples. The S-parameters of the anisotropic 1 ${\mu}m$ $MgB_2$ thin film which were implanted by positrons at 10 keV are 0.567 at 30 K and 0.570 at 50 K. It is believed that the positrons annihilate with normal-electrons instead of super-electrons in the $MgB_2$ superconductor.

A Study on Analysis of Beat Spectra in a Radar System (레이다 시스템에서의 비트 스펙트럼 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2187-2193
    • /
    • 2010
  • A specific radar system can be implemented more easily using the frequency modulated continuous wave comparing with the pulse Doppler radar. It also has the advantage of LPI (low probability of interception) because of the low power and wide bandwidth characteristics. These radars are usually used to cover the short range area and to obtain the high resolution measurements of the target range and velocity information. The transmitted waveform is used in the mixer to demodulate the received echo signal and the resulting beat signal can be obtained. This beat signal is analyzed using the FFT method for the purpose of clutter removal, detection of a target, extraction of velocity and range information, etc. However, for the case of short signal acquisition time, this FFT method can cause the serious leakage effect which disables the detection of weaker echo signals masked by strong side lobes of the clutter. Therefore, in this paper, the weighting window method is analyzed to suppress the strong side lobes while maintaining the proper main lobe width. Also, the results of FFT beat spectrum analysis are shown under various environments.

A Candidate of KVN KSP: Origins of Gamma-ray flares in AGNs

  • Lee, Sang-Sung;Kang, Sincheol;Han, Myoung-Hee;Algaba-Marcos, Juan-Carlos;Byun, Do-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Trippe, Sascha;Wajima, Kiyoaki;Miyazaki, Atsushi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.113.1-113.1
    • /
    • 2014
  • We propose a three-year Key Science Program (KSP) consisting of VLBI monitoring observations and single dish (SD) rapid response observations (RRO). The VLBI monitoring observations are comprised of ten 24-hr observations per year (every month) of about 30 gamma-ray brigt active galactic nuclei (AGNs) with Korea VLBI Network (KVN) at 22, 43, 86, and 129 GHz. The SD RROs may consist of twelve 7-hr observations per source (every week for 3 months after triggering) of gamma-ray flaring sources with two KVN SD telescopes at 22, 43, and 86 GHz in dual polarization. We expect one or two sources per year for the SD RROs. Gamma-ray flares of AGNs are known to be occured in innermost regions of relativistic jets which radiate in whole ranges of electromagnetic spectra due to synchrotron radiation, syschrotron self absorption, inverse-compton scttering, doppler boosting etc. Possible explanations of the gamma-ray flares in AGNs are a) shocks-in-jets propagating within jet flow and b) bending of the whole jets. For both cases, we should expect changes in polarization, luminosity, particle distribution, and structures of jets at mas-scale. The multifrequency simultaneous VLBI/SD observations with KVN are the best tool for detecting such changes correlated with gamma-ray flares. This KSP proposal aims to answer the fundamental questions about the basic nature of the flares of AGNs.

  • PDF

[ Hα ] SPECTRAL PROPERTIES OF VELOCITY THREADS CONSTITUTING A QUIESCENT SOLAR FILAMENT

  • Chae, Jong-Chul;Park, Hyung-Min;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.67-82
    • /
    • 2007
  • The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of $H{\alpha}$ images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 ${\AA}$ from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width($\Delta\lambda_D=0.27{\AA}$), a moderate value of optical thickness at the $H{\alpha}$ absorption peak($\tau_0=0.3$), and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of $15{\pm}3km\;s^{-1}$, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of $0{\pm}3km\;s^{-1}$. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.

Accuracy Evaluation of UHF Wind Profiler Radar Wind Vectors by Setting a Threshold of Signal-to-Noise Ratios (신호대잡음비의 임계값 설정에 따른 UHF 윈드프로파일러 바람벡터의 정확도 평가)

  • Kim, Kwang-Ho;Kim, Park-Sa;Kim, Min-Seong;Kang, Dong-Hwan;Kwon, Byung Hyuk
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1241-1251
    • /
    • 2016
  • A minimum threshold for the signal to noise ratio ($SNR_{min}$) has to be set in the data processing system of wind profiler radar (WPR). The data collection rate and the accuracy of the WPR wind vector depend on the $SNR_{min}$. The WPR at Uljin is operated with an $SNR_{min}$ of 1 dB which is a relatively large threshold. We found that the accuracy and the continuity of the WPR wind vector with height were directly related to the variability of the SNR and vertical gradient of the squared refractive index. We investigated a quantitative method for determining a new $SNR_{min}$ for the WPR at Uljin and it was evaluated with radiosonde data. The accuracy and continuity of the wind vector from an SNR of less than 1 dB, began to decrease at an altitude of 3.5 km. Most of the SNR values were less than -3.5 dB in altitudes higher than 3.5 km. We retrieved high-accuracy wind vectors at altitudes over 3 km where measurements were deficient with an $SNR_{min}$ of 1 dB.