• Title/Summary/Keyword: Doppler Effects

Search Result 294, Processing Time 0.022 seconds

Effect of Interference in CSMA/CA Based MAC Protocol for Underwater Network (CSMA/CA 기반 수중 통신망에서 간섭의 영향 연구)

  • Song, Min-je;Cho, Ho-shin;Jang, Youn-seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1631-1636
    • /
    • 2015
  • With the advance of wireless communication technology in terrestrial area, underwater communication is also evolving very fast from a simple point-to-point transmission to an elaborate networked communications. Underwater acoustic channel has quite different features comparing with the terrestrial radio channel in terms of propagation delay, Doppler shift, multipath, and path loss. Thus, existing technologies developed for terrestrial communication might not work properly in underwater channel. Especially medium access control (MAC) protocols which highly depend on propagation phenomenon should be newly designed for underwater network. CSMA/CA has drawn lots of attention as a candidate of underwater MAC protocol, since it is able to resolve a packet collision and the hidden node problem. However, a received signal could be degraded by the interferences from the nodes locating outside the receiver's propagation radius. In this paper, we study the effects of interference on the CSMA/CA based underwater network. We derived the SNR with the interference using the sonar equation and analyzed the degradation of the RTS/CTS effects. These results are compared with the terrestrial results to understand the differences. Finally we summarized the design considerations in CSMA/CA based underwater network.

High-frequency Reverberation Simulation of High-speed Moving Source in Range-independent Ocean Environment (거리독립 해양환경에서 고속이동 음원의 고주파 잔향음 신호모의)

  • Kim, Sunhyo;Lee, Wonbyoung;You, Seung-Ki;Choi, Jee Woong;Kim, Wooshik;Park, Joung Soo;Park, Kyoung Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.104-115
    • /
    • 2013
  • In a shallow water waveguide, reverberation signals and their Doppler effects form the primary limitation on sonar system performance. Therefore, in the reverberation-limited environment, it is necessary to estimate the reverberation level to be encountered under the conditions in which the sonar system is operated. In this paper, high-frequency reverberation model capable of simulating the reverberation signals received by a high-speed moving source in a range independent waveguide is suggested. In this model, eigenray information from the source to each boundary is calculated using the ray-based approach and the optimizing method for the launch angles. And the source receiving position changed by the moving source is found by a scattering path-finding algorithm, which considers the speed and direction of source and sound speed to find the path of source movement. The scattering effects from sea surface and bottom boundaries are considered by APL-UW scattering models. The model suggested in this paper is verified by a comparison to the measurements made in August 2010. Lastly, this model reflects well statistical properties of the reverberation signals.

A Study on the Application of Gastrodiae rhizoma for Food Stuffs - Effects of Gastrodiae rhizoma on the Regional Cerebral Blood Flow and Blood Pressure - (천마의 식품학적 활용을 위한 기초 연구 - 포제천마 열수 추출물이 국소 뇌혈류량과 혈압에 미치는 영향 -)

  • Park, Sung-Hye;Cho, Choa-Hyoung;Ahn, Byung-Yong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.4
    • /
    • pp.554-562
    • /
    • 2007
  • This study was performed to provide basic data for predicting the usefulness of Gastrodiae rhizoma as a materials for functional foods. Changes in regional cerebral blood flow(rCBF) and blood pressure(BP) were measured in rats, following the intravenous injection of processed Gastrodiae rhizoma water extract. In its processing, we used rice water, Sderotium Poriae Cocos and Radix Ligustici Chuanxiaong. The rCBF and BP measurements were continually monitored by a laser-doppler flowmeter and a pressure transducer in the anesthetized adult Sprague-Dawley rats for approximately about two to two and a half hours, through a data acquisition system composed of a MacLab and Macintosh computer. The results of the experiment are as follows: the processed Gastrodiae rhizoma significantly increased changes in rCBF in the rats. The rCBF with processed Gastrodiae rhizoma did not change by pretreatment with propranolol, atropin, methylene blue, and indomethacin. But the rCBF of the processed Gastrodiae rhizoma was increased by pretreatment with L-NNA. The processed Gastrodiae rhizoma significantly decreased the changes in BP. However, BP with the processed Gastrodiae rhizoma did not change by pretreatment with propranolol, atropin, methylene blue and indomethacin. On the other hand, BP decreased with the processed Gastrodiae rhizoma pretreatment with L-NNA. These results indicate that processed Gastrodiae rhizoma might increase the rCBF and the BP which are related to nitric oxide synthesis. Also these results indicate that the used of processed Gastrodiae rhizoma in safe, as well as clinically applicable in diet therapy for cerebral related disease and hypertension.

  • PDF

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary (ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정)

  • Shin, Hyun-Jung;Kang, Kiryong;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.180-190
    • /
    • 2014
  • It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.

Noise Analysis and Measurement for a CW Bio-Radar System for Non-Contact Measurement of Heart and Respiration Rate (호흡 및 심박수 측정을 위한 비접촉 방식의 CW 바이오 레이더 시스템의 잡음 분석 및 측정)

  • Jang, Byung-Jun;Yook, Jong-Gwan;Na, Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1010-1019
    • /
    • 2008
  • In this paper, we present a noise analysis and measurement results of a bio-radar system that can detect human heartbeat and respiration signals. The noise analysis including various phase noise effects is very important in designing the bio-radar system, since the frequency difference between the received signal and local oscillator is very small and the received power is very low. All of the noise components in a bio-radar system are considered from the point of view of SNR. From this analysis, it can be concluded that the phase noise due to antenna leakage is a dominant factor and is a function of range correlation. Therefore, the phase noise component with range correlation effect, which is the most important noise contribution, is measured using the measurement setup and compared with the calculated results. From the measurement results, our measurement setup can measure a closed-in phase noise of a free-running oscillator. Based on these results, it is possible to design a 2.4 GHz bio-radar system quantitatively which has a detection range of 50 cm and low power of 1 mW without additional PLL circuits.

A Study of Medicinal Plants for Applications in Functional Foods 1. Effects of Schizandrae fructus on the Regional Cerebral Blood Flow and Blood Pressure in Rats (기능성 식품으로의 활용을 위한 한약자원에 관한 연구 1. 오미자 열수추출물이 흰쥐의 국소 뇌혈류량과 혈압에 미치는 영향)

  • 박성혜;한종현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • The purpose of this study was to measure the changes of regional cerebral blood flow (rCBF) and blood pressure (BP) in rats, following the intravenous injection of Schizandrae fructus water extract. The measurement was continually monitored by laser-doppler flowmeter and pressure tranducer in anesthetized adult Sprague-Dawley rats for 2 hours to 2 hours and a half through the data acquisition system composed of MacLab and Macintosh computer. The result of this experiment was as followed. Schizandrae fructus increased the changes of rCBF in rats significantly. The rCBF of Schizandrae fructus did not change by pretreated propranolol, atropine, L-NNA and indomethacin. But the rCBF of Schizandrae fructus was increased by pretreated methylene blue. Schizandrae fructus decreased the changes of BP, significantly. The BP of Schizandrae fructus did not change by pretreated propranolol, atropine, L-NNA and indomethacin. But the BP of Schizandrae fructus was decreased by pretreated methylene blue. There results indicated that Schizandrae fructus can increase the rCBF and decrease the BP, that is related to guanylyl cyclase activity.

Development of a Measurement Data Algorithm of Deep Space Network for Korea Pathfinder Lunar Orbiter mission (달 탐사 시험용 궤도선을 위한 심우주 추적망의 관측값 구현 알고리즘 개발)

  • Kim, Hyun-Jeong;Park, Sang-Young;Kim, Min-Sik;Kim, Youngkwang;Lee, Eunji
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.746-756
    • /
    • 2017
  • An algorithm is developed to generate measurement data of deep space network for Korea Pathfinder Lunar Orbiter (KPLO) mission. The algorithm can provide corrected measurement data for the Orbit Determination (OD) module in deep space. This study describes how to generate the computed data such as range, Doppler, azimuth angle and elevation angle. The geometric data were obtained by General Mission Analysis Tool (GMAT) simulation and the corrected data were calculated with measurement models. Therefore, the result of total delay includes effects of tropospheric delay, ionospheric delay, charged particle delay, antenna offset delay, and tropospheric refraction delay. The computed measurement data were validated by comparison with the results from Orbit Determination ToolBoX (ODTBX).

Gender Differences in Physiological Effects of a Transient Exposure to Experimental Noise

  • Hyun, Kyung-Yae;Kim, Chong-Rak;Kim, Hwa-Il;Kim, Young-Hwal;Choi, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.375-383
    • /
    • 2006
  • The physiological responses following stress are different in individual or personality. We performed this study to clarify gender differences in influences of noise stress on physiological factors. 70 healthy subjects, which was divided man (n=30) and woman (n=40) groups, were exposed to 85 decibels of excavator noise for 15 minutes. Cardiac factors such as heart rate (HR), systolic and diastolic blood pressures (SBP and DBP, respectively), and heart rate-systolic pressure product (RPP) were determined. Transcranial Doppler ultrasound (TCD) was used to measure mean blood flow velocity (Vm), pulsatility index (PI), and resistance index (RI) in the middle, anterior and posterior cerebral arteries (MCA, ACA and PCA, respectively) before and during noise exposure. Cortisol level and hematological variables were also measured before (baseline) and immediately after the end of noise exposure. In the both groups HR, SBP, and RPP significantly decreased during noise exposure (P<0.05) but not significantly different between two groups (P>0.05). Vms of three cerebral arteries in man group decreased, whereas Vm of PCA in woman group fell during noise exposure (P<0.05). Vm, PI and RI in MCA and ACA during noise exposure were low in man group compared with woman group (P<0.05). Vm of PCA was low, whereas PI and RI of PCA were high in man group compared with woman group during noise exposure (P<0.05). Total leukocyte and red blood cell (RBC) counts slightly decreased during noise exposure but not significant (P>0.05). Levels in hematological variables decreased but not significant changed following noise exposure. Decreased rate of total leukocyte in man group was higher (P<0.05). Cortisol levels in the both groups decreased immediately after the end of noise exposure, while the decreased rate in man group was greater than that in woman group (p<0.05). These findings indicate that a transient exposure to experimental excavator noise may cause decreased changes in cardiac factors, cerebral hemodynamics and cortisol levels and the changes may be greater in men than in women.

  • PDF

Effects of Uwhangchungsim-won(Niuhuangqingxin-yuan) on Systemic Blood Pressure, Pulse Rate, Cerebral Blood Flow, and Cerebrovascular Reactivity in Humans (우황청심원(牛黃淸心元)이 정상인의 혈압(血壓), 맥박수(脈搏數), 뇌혈류(腦血流) 및 뇌혈관반응도(腦血管反應度)에 미치는 영향(影響))

  • Yun, Sang-Pil;Lee, Sang-Ho;Kim, Eun-Ju;Na, Byong-Jo;Jung, Dong-Won;Shin, Won-Jun;Moon, Sang-Kwan;Bae, Hyung-Sup;Kim, Lee-Dong
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.440-450
    • /
    • 2004
  • Objectives: Uwhangchungsim-won(UC) has been used in the treatment of a wide variety of conditions including stroke, hypertension, arterosclerosis, autonomic imbalance, and mental instability, in Korean traditional hospitals. The aim of this study was to evaluate the effect of DC on cerebral hemodynamics and to determine the appropriate dosage. Methods: We studied changes in hyperventilation-induced cerebrovascular reactivity and mean blood flow velocity of the middle cerebral arteries(MCAs) were studied by means of transcranial Doppler ultrasound. Changes in mean blood pressure, pulse rate and expiratory CO2(PECO2) were observed using Cardiocap TM/5. Six healthy young volunteers who were administrated with full doses of DC for group A, and half doses for group B. Six other healthy subjects comprised the control group. The evaluation was performed during basal condition, and repeated at 20, 40, 60, 120, and 180 minutes after administration. Results: Increases of cerebrovascular reactivity and mean blood flow velocity in the middle cerebral artery in group A were significantly different compared with group B and the control group (p<0.1). Mean blood pressure, pulse rate and expiratory CO2 did not change during the observation and were not different among these three groups. We observed that in cerebrovascular reactivity induced hyperventilation, group A was most effective at 40 minutes after administration, and its effectiveness lasted for 120 minutes. Conclusions: This study provides evidence for UC, in full doses, as an agent for dilation of the cerebral arteriols to increase hyperventilation-induced cerebrovascular reactivity as a consequence of faster recovery of blood flow velocity.

  • PDF

Effect of Smoking on Gingival Blood Flow (흡연이 치은혈류량에 미치는 영향)

  • Oh, Hyun-Jeong;Park, Byung-Ki;Shin, Kwang-Yong;Han, Kyung-Yoon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.471-482
    • /
    • 2000
  • Recent studies have demonstrated that smoking may be one of the most significant risk factors in the development and progression of periodontal disease. Reports have indicated that smoking causes gingival blood flow to be decreased. However, studies on the effects of smoking on gingival blood flow have yielded contradictory results. The purpose of the present study was to determine the effect of smoking on gingival blood flow. One hundred volunteers(fifty non-smokers and fifty smokers) with good general and periodontal health, aged twenties(non-smoker : 22-29 years, mean=25.36, smoker : 23-29 years, mean=26.64) were selected. Laser Doppler flowmetry (floLAB, Moor Instruments Ltd., England) was applied to measure the gingival blood flow of interdental papilla, marginal gingiva, attached gingiva and alveolar mucosa of left and right upper lateral incisors. In smokers, following an overnight abstinence from smoking, gingival blood flow was measured before smoking, immediately after smoking, 1-, 2-, 3-, 4-, 5- and 6- hour after smoking from 9 a.m. to 3:30 p.m. The difference of blood flow in each tissue of non-smokers and that of each measuring time and each tissue of smokers were statistically analyzed by one way ANOVA and Tukey test. And the difference of blood flow between smokers and nonsmokers in each tissue was statistically analyzed by t-test. The results were as follows : 1. Mean blood flow was highest in alveolar mucosa, followed by interdental papilla, attached gingiva and marginal gingiva in both smokers and nonsmokers. There was a statistically significant difference in each tissue(p<0.05) . 2. There was no consistent result between mean blood flow before smoking in smokers and that of nonsmokers in each tissue. 3. There was a statistically significant difference between gingival blood flow at measuring time point and gingival blood flow of smokers in each tissue(p<0.05). The present study suggested that smoking could alter the gingival blood flow, thus might be partly contributed to periodontal destruction.

  • PDF