DOI QR코드

DOI QR Code

Development of a Measurement Data Algorithm of Deep Space Network for Korea Pathfinder Lunar Orbiter mission

달 탐사 시험용 궤도선을 위한 심우주 추적망의 관측값 구현 알고리즘 개발

  • Kim, Hyun-Jeong (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Park, Sang-Young (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Kim, Min-Sik (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Kim, Youngkwang (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Lee, Eunji (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University)
  • Received : 2017.03.13
  • Accepted : 2017.08.17
  • Published : 2017.09.01

Abstract

An algorithm is developed to generate measurement data of deep space network for Korea Pathfinder Lunar Orbiter (KPLO) mission. The algorithm can provide corrected measurement data for the Orbit Determination (OD) module in deep space. This study describes how to generate the computed data such as range, Doppler, azimuth angle and elevation angle. The geometric data were obtained by General Mission Analysis Tool (GMAT) simulation and the corrected data were calculated with measurement models. Therefore, the result of total delay includes effects of tropospheric delay, ionospheric delay, charged particle delay, antenna offset delay, and tropospheric refraction delay. The computed measurement data were validated by comparison with the results from Orbit Determination ToolBoX (ODTBX).

본 연구에서는 한국형 달 탐사 시험용 궤도선을 위한 심우주 추적망 (Deep Space Network)의 관측값을 구현하는 알고리즘을 개발하였다. 이 알고리즘을 활용하여 탐사선의 신호 지연 효과를 관측 모델을 통해 보정해서 계산된 관측값을 생성할 수 있다. 계산된 관측값으로 거리, 도플러, 방위각, 고도각을 생성하였다. 기하학적 데이터 값을 General Mission Analysis Tool (GMAT)의 시나리오를 통해 구하였으며, 계산된 관측값을 구하기 위해서 시간 지연 효과, 대류층 지연 효과, 대류권 내 하전 입자에 의한 지연 효과, 대류권 밖 하전 입자에 의한 지연 효과, 대류층에 의한 굴절 효과, 안테나에 의한 지연 효과를 고려하였다. 관측 모델들을 통해 구한 계산된 관측값은 시험용 궤도선의 정밀 궤도 결정을 위해 사용된다. 본 논문에서 개발한 데이터 시뮬레이션 모듈은 미 항공우주국의 궤도 결정 툴 박스 (Orbit Determination ToolBoX, ODTBX)를 이용해 검증되었다.

Keywords

References

  1. Song, Y-J, Lee, D., Bae, J-H, Kim, B., Kim, Y., Lee, E-J, Kim, H-J, Park, S-Y, "Preliminary Design of LUDOLP: the Flight Dynamics Subsystem for the Korean Pathfinder Lunar Orbiter Mission", 14th International Conference on Space Operation, May 16-20, 2016, Daejeon, Korea.
  2. Kim, Sang-Goo, Dong-Weon Yoon, and Kwang-Min Hyun. "Ground stations of korean deep space network for lunar explorations." Journal of the Korean Society for Aeronautical & Space Sciences 38.5 (2010): 499-506. https://doi.org/10.5139/JKSAS.2010.38.5.499
  3. Hae-Yeon Kim et al., "Deep Space Network Measurement Model Development for Interplanetary Mission" Journal of Astronomy and Space Sciences 21.4 (2004): 361-370. https://doi.org/10.5140/JASS.2004.21.4.361
  4. Moyer, T. D., "Formulation for Observed and Computed Values of DSN Data Types for Navigation", Willy & Sons, New Jersey, 2000.
  5. Montenbruck O., Gill E., "Satellite Orbits Models, Methods, Applications", Springer, New York, 2005.
  6. Klobuchar, J. A., 1987, "Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users", IEEE Journal, Vol. AES-23, No. 3, pp.325-331 .
  7. Burkhart, P. D., "Adaptive orbit determination for interplanetary spacecraft", PhD Dissertation, University of Texas, 1995.
  8. HynJeong Kim, "Development of the Data Simulation Module of the Flight Dynamics Subsystem for Korea Pathfinder Lunar Orbiter", The Graduate School, Dept. of Astronomy, August, 2016.
  9. General Mission Analysis Tool, GMAT Software Package, Ver 2014a, NASA Goddard Space Flight Center, 2014.
  10. Orbit Determination ToolBoX, ODTBX Software Package, Ver 6.5., NASA Goddard Space Flight Center, 2015.
  11. Wright, J. R., "Orbit Determinatoin Tool Kit Theory & Algorithms", Analytical Graphics, Inc., 2013.
  12. Vallado, D. A., "Fundamentals of Astrodynamics and Applications" Springer Science & Business Media, New York, 2007.