DOI QR코드

DOI QR Code

High-frequency Reverberation Simulation of High-speed Moving Source in Range-independent Ocean Environment

거리독립 해양환경에서 고속이동 음원의 고주파 잔향음 신호모의

  • 김선효 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 이원병 (해군해양전술정보단) ;
  • 유승기 (LIG 넥스원(주) M&S 연구센터) ;
  • 최지웅 (한양대학교 해양융합과학과 해양음향연구실) ;
  • 김우식 (국방과학연구소) ;
  • 박정수 (국방과학연구소) ;
  • 박경주 (해군사관학교)
  • Received : 2012.08.23
  • Accepted : 2012.11.16
  • Published : 2013.03.31

Abstract

In a shallow water waveguide, reverberation signals and their Doppler effects form the primary limitation on sonar system performance. Therefore, in the reverberation-limited environment, it is necessary to estimate the reverberation level to be encountered under the conditions in which the sonar system is operated. In this paper, high-frequency reverberation model capable of simulating the reverberation signals received by a high-speed moving source in a range independent waveguide is suggested. In this model, eigenray information from the source to each boundary is calculated using the ray-based approach and the optimizing method for the launch angles. And the source receiving position changed by the moving source is found by a scattering path-finding algorithm, which considers the speed and direction of source and sound speed to find the path of source movement. The scattering effects from sea surface and bottom boundaries are considered by APL-UW scattering models. The model suggested in this paper is verified by a comparison to the measurements made in August 2010. Lastly, this model reflects well statistical properties of the reverberation signals.

천해 환경에서 고주파 능동소나를 운용할 경우 각 경계면에서의 잔향음 및 도플러 효과는 소나 운용에 제한요소로 작용한다. 따라서 잔향음 제한 환경에서 소나 시스템을 운용하기 위해서는 그 환경 조건에서 발생하는 잔향음 준위를 예측하는 것이 중요하다. 본 논문에서는 거리 독립 환경에서 고속으로 이동하는 음원에서 수신되는 잔향음 신호를 모의할 수 있는 고주파 잔향음 모델을 제안한다. 본 모델에서는 음선 이론과 음선 송신각 최적화 방법을 이용하여 음원에서 각 경계면까지의 고유음선 정보를 계산하고, 이동하는 음원에 의해 변화된 음원 수신 위치는 음속 그리고 음원의 방향 및 속도를 고려한 산란경로 탐색 알고리즘에 의하여 계산된다. 또한 해수면 및 해저면에서의 산란 효과는 APL-UW 산란 모델을 적용하여 고려한다. 본 논문에서 제안한 잔향음 모델은 2010 년 8월 측정된 실험과 비교 검증된다. 본 논문에서 제안된 잔향음 모델은 잔향음 신호의 통계적 특성을 잘 반영하도록 개발되었다.

Keywords

References

  1. H. Weinberg, "CASS roots," OCEANS 2000 TS/IEEE Conference Proceedings, 1071-1076 (2000).
  2. R. E. Keenan, "An introduction to GRAB eigenrays and CASS reverberation and signal excess," OCEANS 2000 MTS/IEEE Conference Proceedings, 1065-1070 (2000).
  3. S. G. Chamberlain and J. C. Galli, "A model for numerical simulation of nonstationary sonar reverberation using linear spectral prediction," IEEE J. of Oceanic Engineering, 8, 21-36 (1983). https://doi.org/10.1109/JOE.1983.1145543
  4. P. C. Etter, Underwater Acoustic Modeling and Simulation, (Spon Press, London and New York, 2003).
  5. J. W. Choi, K. S. Yoon, J. Na, J. S. Park, and Y. N. Na, "Shallow water high-frequency reverberation model" (in Korea), J. Acoust. Soc. Kr. 21, 671-678 (2002).
  6. T. H. Oh, H. S. La, J. Y. Na, and C. Y. Park, "Midfrequency bistatic reverberation model" (in Korea), J. Acoust. Soc. Kr. 25, 389-394 (2006).
  7. Y. M. Chu, W. J. Seong, I. S. Yang, and W. T. Oh, "Mid frequency band reverberation model development using ray theory and comparison with experimental data" (in Korea), J. Acoust. Soc. Kr. 28, 740-754 (2009).
  8. S. I. Kim, Y. S. Kim, Y. N. Na, and Y. G. Kim, "Monostatic reverberation calculation using the BELLHOP model" (in Korea), J. Acoust. Soc. Kr. Suppl. 1(s) 28, 456-457 (2012).
  9. H. Medwin and C. Clay, Fundamentals of Acoustical Oceanography (Academic Press, New York, 1997).
  10. L. Xavier, An Introduction to Underwater Acoustics, (Springer, Chichester UK, 2002).
  11. F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, Computational Ocean Acoustics (American Institute of Physics, New York, 1993).
  12. R. E. Francois and G. R. Garrison, "Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption," J. Acoust. Soc. Am. 72, 1879-1890, (1982). https://doi.org/10.1121/1.388673
  13. R. J. Urick, Principle of Underwater Sound (McGraw-Hill, New York, 1983).
  14. W. B. Lee, J. M. Joo, S. H. Kim, J. W. Choi, J. S., and Park, W. S. Kim, "Ray-based simulation of high-frequency reverberation level" (in Korea), J. Acoust. Soc. Kr. Suppl. 2(s) 29, 220-221 (2010).
  15. APL-UW, "APL-UW High-frequency ocean environmental acoustic models handbook," APL-UW TR 9407, AEAS 9501, Appl. Physics Lab., University of Washington, Tech. Rep. (1997).
  16. N. C. Makris, "The effect of saturated transmission scintillation on ocean acoustic intensity measurements," J. Acoust. Soc. Am. 100, 769-783 (1996). https://doi.org/10.1121/1.416239
  17. J. W. Choi and P. H. Dahl, "Measurement and simulation of the channel intensity impulse response for a site in the East China Sea," J. Acoust. Soc. Am. 119, 2677-2685 (2006). https://doi.org/10.1121/1.2189449
  18. H. La and J. W. Choi, "8-kHz bottom backscattering measurements at low grazing angles in shallow water," J. Acoust. Soc. Am. 127, 160-165 (2010). https://doi.org/10.1121/1.3338987

Cited by

  1. Target Signal Simulation in Synthetic Underwater Environment for Performance Analysis of Monostatic Active Sonar vol.32, pp.6, 2013, https://doi.org/10.7776/ASK.2013.32.6.455