• Title/Summary/Keyword: Doping process

Search Result 509, Processing Time 0.025 seconds

New Doping Process for low temperature poly silicon TFT

  • Park, Kyung-Min;You, Chun-Gi;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.303-306
    • /
    • 2005
  • We report the self-aligned low temperature poly silicon (LTPS) TFT process using simple doping process. In conventional LTPS-TFT, the Lightly Doped Drain (LDD) doping and source/drain doping are processed separately by aligning the gate with the source and drain during the gate lithography step. This ne w process not only fabricates fully self-aligned low temperature poly silicon TFTs with symmetric LDD structure but also simplifies the process flow with combined source/drain doping and LDD doping in one step. LDD doping process can be achieved using only source/drain doping process according to the new structure. In this paper, the TFT characteristics of NMOS and PMOS using the new doping process will be discussed.

  • PDF

Effects of Laser Doping on Selective Emitter Si Solar Cells (레이져를 이용한 도핑 특성과 선택적 도핑 에미터 실리콘 태양전지의 제작)

  • Park, Sungeun;Park, Hyomin;Nam, Junggyu;Yang, JungYup;Lee, Dongho;Min, Byoung Koun;Kim, Kyung Nam;Park, Se Jin;Lee, Hae-Seok;Kim, Donghwan;Kang, Yoonmook;Kim, Dongseop
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.54-58
    • /
    • 2016
  • Laser-doped selective emitter process requires dopant source deposition, spin-on-glass, and is able to form selective emitter through SiNx layer by laser irradiation on desired locations. However, after laser doping process, the remaining dopant layer needs to be washed out. Laser-induced melting of pre-deposited impurity doping is a precise selective doping method minimizing addition of process steps. In this study, we introduce a novel scheme for fabricating highly efficient selective emitter solar cell by laser doping. During this process, laser induced damage induces front contact destabilization due to the hindrance of silver nucleation even though laser doping has a potential of commercialization with simple process concept. When the laser induced damage is effectively removed using solution etch back process, the disadvantage of laser doping was effectively removed. The devices fabricated using laser doping scheme power conversion efficiency was significantly improved about 1% abs. after removal the laser damages.

Study of Boron Doping Feasibility with Atmospheric Pressure Plasma for p-n Junction Formation on Silicon Wafer for Semiconductor (p-n 접합 형성을 위한 반도체 실리콘 웨이퍼 대기압 플라즈마 붕소 확산 가능성 연구)

  • Kim, Woo Jae;Lee, Hwan Hee;Kwon, Hee Tae;Shin, Gi Won;Yang, Chang Sil;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.20-24
    • /
    • 2017
  • Currently, techniques mainly used in semiconductor impurity diffusion processes include furnace thermal diffusion, ion implantation, and vacuum plasma doping. However, there is a disadvantage that the process equipment and the unit cost are expensive. In this study, boron diffusion process using relatively inexpensive atmospheric plasma was conducted to solve this problem. With controlling parameters of Boron diffusion process, the doping characteristics were analyzed by using secondary ion mass spectrometry. As a result, the influence of each variable in the doping process was analyzed and the feasibility of atmospheric plasma doping was confirmed.

  • PDF

Polycrystalline silicon doping using antimony thin film as doping source (안티몬 박막을 도우핑소스로 찬 다결정실리콘 도우핑)

  • 이인찬;마대영;김상현;김영진;김기완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.55-59
    • /
    • 1993
  • In this study, we developed new process for doping poly-Si film. Sb(antimony) thin film was used as doping source. Sb was evaporated on poly-Si film deposited by LPCVD fallowed by annealing. We investigate sheet resistance variation with annealing temperature and time. Finally we adapted this process to poly-Si TFT fabrication.

  • PDF

Analysis of Single Crystal Silicon Solar Cell Doped by Using Atmospheric Pressure Plasma

  • Cho, I-Hyun;Yun, Myoung-Soo;Son, Chan-Hee;Jo, Tae-Hoon;Kim, Dong-Hae;Seo, Il-Won;Roh, Jun-Hyoung;Lee, Jin-Young;Jeon, Bu-Il;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.357-357
    • /
    • 2012
  • The doping process of the solar cell has been used by furnace or laser. But these equipment are so expensive as well as those need high maintenance costs and production costs. The atmospheric pressure plasma doping process can enable to the cost reduction. Moreover the atmospheric pressure plasma can do the selective doping, this means is that the atmospheric pressure plasma regulates the junction depth and doping concentration. In this study, we analysis the atmospheric pressure plasma doping compared to the conventional furnace doping. the single crystal silicon wafer doped with dopant forms a P-N junction by using the atmospheric pressure plasma. We use a P type wafer and it is doped by controlling the plasma process time and concentration of dopant and plasma intensity. We measure the wafer's doping concentration and depth by using Secondary Ion Mass Spectrometry (SIMS), and we use the Hall measurement because of investigating the carrier concentration and sheet resistance. We also analysis the composed element of the surface structure by using X-ray photoelectron spectroscopy (XPS), and we confirm the structure of the doped section by using Scanning electron microscope (SEM), we also generally grasp the carrier life time through using microwave detected photoconductive decay (u-PCD). As the result of experiment, we confirm that the electrical character of the atmospheric pressure plasma doping is similar with the electrical character of the conventional furnace doping.

  • PDF

Optimization of the $POCI_3$ doping process according to the variation of deposition temperature, gas flow rate and doping time (온도, 가스량 및 도핑시간변화에 따른 $POCI_3$ 도핑 공정의 최적화)

  • 정경화;강정진
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.206-212
    • /
    • 1994
  • In this paper, We discuss the $POCI_3$ doping process according to the variation of deposition temperature, gas flow rate and doping time. The factors acted with $POCI_3$ doping are gas flow rate deposition temperature and time etc. Among them the temperature is the most important factor. For the $POCI_3$ flow rate, it should not exceed the resistivity saturation point developed on poly surface by annealing treatment. Therefore, this study suggests the optimum conditions of Poly-silicon treatments with the $POCI_3$ flow rate.

  • PDF

Fabrication of Nonlinear Optical Fiber Doped with PbTe Quantum Dots Using Atomization Doping Process and its Optical Property (Atomization 방법을 이용한 PbTe quantum dots이 함유된 비선형 광섬유의 제조 및 광특성)

  • Ju, Seong-Min;Lee, Su-Nam;Kim, Taek-Jung;Han, Won-Taek
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.02a
    • /
    • pp.360-361
    • /
    • 2004
  • An atomization doping process is proposed to manufacture nonlinear optical fiber containing higher concentration of PbTe nano-particles in the core of the fiber than that by the conventional solution doping process. The absorption peaks appeared near 725nm, 880nm, and 1050nm are attributed to the PbTe quantum dots in the fiber core.

  • PDF

Effect of $CeO_2$-addition and Particle Size of Doping Material on Characteristic of High-$T_c$ Superconducting Thick Film Using Diffusion Process ($CeO_2$첨가와 도포물질의 입자크기가 화산공정을 이용한 고온초전도 후막의 특성에 미치는 영향)

  • 임성훈;강형곤;홍세은;윤기웅;황종선;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.152-157
    • /
    • 2001
  • For the fabrication of YBa$_2$Cu$_3$O$_{x}$ thick film using diffusion process between $Y_3$BaCuO$_{5}$ and BaO+CuO, each material was selected as substrate and doping material. In this paper, we investigated the characteristic of YBa$_2$Cu$_3$O$_{x}$ thick film due to both addition of CeO$_2$into substrate and initial particle size of doping material. Through X-ray diffraction patterns and SEM photographs, the variation of composition and thickness of the formed phase was observed. It was from the experiment obtained that the addition of CeO$_2$into $Y_2$BaCuO$_{5}$ substrate and the initial particle size of doping material play important part in promoting the reaction between substrate and doping material.aterial.

  • PDF

Characterization Of YBCO HTSC-Thick film With addiction of $CeO_2$ ($CeO_2$첨가에 따른 YBCO고온초전도 후막의 특성)

  • 윤기웅;임성훈;홍세은;강형곤;한용희;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.239-242
    • /
    • 2000
  • To fabricate YBa$_2$Cu$_3$O$_{x}$ thick film using diffusion process, $Y_2$BaCuO$_{5}$ and BaO+CuO as the material of substrate and the doping material were selected. CeO$_2$ in the doping material was mixed. As another doping material, YBa$_2$Cu$_3$O$_{x}$ was prepared for the comparison with BaO+CuO doping material. Each doping material was patterned on $Y_2$BaCuO$_{5}$ substrate by the screen printing method and then was annealed above peritectic reaction temperature of YBCO with a few step. It could be observed by X-ray diffraction patterns and SEM photographs that through the diffusion process of the $Y_2$BaCuO$_{5}$ and BaO+CuO, the YBa$_2$Cu$_3$O$_{x}$ phase was formed. With an amout of addition of CeO$_2$, the thickness of a formed YBa$_2$Cu$_3$O$_{x}$ decreased. x/ decreased.

  • PDF

Effect of Soaking Temperature on Erbium Doping of Optical Fiber Core in MVCD Solution Doping Process

  • Han, Won-Taek;Kim, Yune-Hyoun;Paek, Un-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.47-52
    • /
    • 2003
  • Effect of soaking temperature on erbium doping of the optical fiber core during solution doping procedure, especially in the modified chemical vapor deposition (MCVD) process, was investigated. The concentration of dopants such as $Er^{3+} and Al^{3+}$ in the preforms and the optical fibers measured by the electron probe microanalysis (EPMA) and the optical spectrum analyzer (OSA) was found to increase with decreasing the soaking temperature. The increase in the concentration of the $Er^{3+}$ is attributed to the precipitation of the erbium due to the decrease in the solubility as well as the increase of capillary force and viscosity of the doping solution by decreasing the temperature.