• Title/Summary/Keyword: Doping mechanism

Search Result 114, Processing Time 0.031 seconds

Photoinduced anisotropy in the Ag and Cu photodoped chalcogenide As-Ge-Se-S thin films (칼코게나이드 As-Ge-Se-S 박막에서 Ag와 Cu 광도핑에 의한 광유기 이방성)

  • 박종화;장선주;박정일;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.535-538
    • /
    • 2000
  • We have investigated the photoinduced anisotropy in chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin films, non-doped and photodoped by Ag and Cu. The films were exposed by the linearly polarized He-Ne laser light( $\lambda$=632.8nm). The Ag and Cu photodoping resulted in reducing the time of saturation photoinduced linearly dichroism. Also photoinduced linearly dichroism was increased up to maximum 184% by Ag photodoping and 138% by Cu photodoping, respectively. As the result of this study, the linearly dichroism can be interesting for different applications of photoinduced anisotropy. In addition, it will offer lots of information for the photodoping mechanism and analysis of chalcogenide thin film.

  • PDF

Diffusion Model of Aluminium for the Formation of a Deep Junction in Silicon (실리콘에서 깊은 접합의 형성을 위한 알루미늄의 확산 모델)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • In this study, the physical mechanism and diffusion effects in aluminium implanted silicon was investigated. For fabricating power semiconductor devices, an aluminum implantation can be used as an emitter and a long drift region in a power diode, transistor, and thyristor. Thermal treatment with O2 gas exhibited to a remarkably deeper profile than inert gas with N2 in the depth of junction structure. The redistribution of aluminum implanted through via thermal annealing exhibited oxidation-enhanced diffusion in comparison with inert gas atmosphere. To investigate doping distribution for implantation and diffusion experiments, spreading resistance and secondary ion mass spectrometer tools were used for the measurements. For the deep-junction structure of these experiments, aluminum implantation and diffusion exhibited a junction depth around 20 ㎛ for the fabrication of power silicon devices.

Optical Properties of Ag/Chalcogenides Thin Films Exposed to Laser (레이저 광 노출에 따른 Ag/칼코게나이드 박막의 광학적인 특성)

  • 김종기;박정일;정흥배;이현용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.561-565
    • /
    • 1999
  • We measured the optical properties in Ag/chalcogenide films with the exposure of 325nm-Held laser In addition we have investigated the Ag doping mechanism as considering the changes of Ag-concentration distribution and optical energy gap ( $E_{op}$ ) with Photon-dose. The "windows" characteristics of Ag thin film occur around the wavelength of 325 nm and the Ag is evaluated to be transparent, without an absorption, in the region. While the $E_{op}$ of S $b_2$ $S_3$ thin film was changed largely by an exposure of HeNe laser(632.8 nm) an exposure of HeCd laser resulted in relatively small variation of $E_{op}$ . Therefore it is thought that photon absorption at the metal layer plays an important role in Ag photodoping.on at the metal layer plays an important role in Ag photodoping.

  • PDF

Differences of Structural and Electronic Properties in $Ba_{1-x}K_xBiO_3$ (x=0, 0.04, and 0.4)

  • 정동운;최은국
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1045-1048
    • /
    • 1999
  • Electronic structures calculated based upon the extended Huckel tight-binding method for Ba1-xKxBiO3 with x = 0, 0.04, and 0.4 are reported. It is noticed that the commensurate ordering of Bi 3+ and Bi 5+ is responsible for the insulating and semiconducting behavior in BaBiO3 and Ba0.96K0.04BiO4. The band gaps of 3.2 eV and 1.4 eV for the former and the latter compounds, respectively, are consistent with the experimental results. Doping in Bi 6s-block band up to x = 0.4 causes the collapse of the ordering of Bi 3+ and Bi 5+, thereby resulting in the superconductivity in the Ba0.6K0.4BiO3 compound. Strikingly, the character of oxygen contributes to the conducting mechanism than that of the bismuth. This is quite different from the cuprate superconductors in which the character of copper dominates that of oxygen.

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF

VT-Modulation of Planar Tunnel Field-Effect Transistors with Ground-Plane under Ultrathin Body and Bottom Oxide

  • Sun, Min-Chul;Kim, Hyun Woo;Kim, Hyungjin;Kim, Sang Wan;Kim, Garam;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.139-145
    • /
    • 2014
  • Control of threshold voltage ($V_T$) by ground-plane (GP) technique for planar tunnel field-effect transistor (TFET) is studied for the first time using TCAD simulation method. Although GP technique appears to be similarly useful for the TFET as for the metal-oxide-semiconductor field-effect transistor (MOSFET), some unique behaviors such as the small controllability under weak ground doping and dependence on the dopant polarity are also observed. For $V_T$-modulation larger than 100 mV, heavy ground doping over $1{\times}10^{20}cm^{-3}$ or back biasing scheme is preferred in case of TFETs. Polarity dependence is explained with a mechanism similar to the punch-through of MOSFETs. In spite of some minor differences, this result shows that both MOSFETs and TFETs can share common $V_T$-control scheme when these devices are co-integrated.

Performance Characteristics of Polymer Photovoltaics using Dimethyl Sulphoxide incorporated PEDOT:PSS Buffer Layer

  • Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Gang, Yong-Su;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.238-239
    • /
    • 2010
  • Dimethyl sulphoxide (DMSO) is one of the widely-used secondary dopants in order to enhance the conductivity of poly(3, 4-ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) film. In this work, we investigated the effect of DMSO doping in to PEDOT:PSS on the electrical performance of the bulk heterojunction photovoltaics consisting of poly(3-hexylthiophene-2, 5-diyl) and phenyl-C61-butyric acid methyl ester. Correlation between the power conversion efficiency and the mechanism of improving conductivity, surface morphology, and contact properties was examined. The PEDOT:PSS films, which contain different concentration of DMSO, have been prepared and annealed at different annealing temperatures. The mixture of DMSO and PEDOT:PSS was prepared with a ratio of 1%, 5%, 15%, 25%, 35%, 45%, 55% by volume of DMSO, respectively. The DMSO-contained PEDOT:PSS solutions were stirred for 1hr at $40^{\circ}C$, then spin-coated on the ultra-sonicated glass. The spin-coated films were baked for 10min at $65^{\circ}C$, $85^{\circ}C$, and $120^{\circ}C$ in air. In order to investigate the electrical performance, P3HT:PCBM blended film was deposited with thickness of 150nm on DMSO-doped PEDOT:PSS layer. After depositing 100nm of Al, the device was post-annealed for 30min at $120^{\circ}C$ in vacuum. The fabricated cells, in this study, have been characterized by using several techniques such as UV-Visible spectrum, 4-point probe, J-V characteristics, and atomic force microscopy (AFM). The power conversion efficiency (AM 1.5G conditions) was increased from 0.91% to 2.35% by tuning DMSO doping ratio and annealing temperature. It is believed that the improved power conversion efficiency of the photovoltaics is attributed to the increased conductivity, leading to increasing short-circuit current in DMSO-doped PEDOT:PSS layer.

  • PDF

Electrical Conductivity of the Solid Solutions X $ZrO_2+ (1-X) Yb_2O_3; 0.01{\leq}X{\leq}0.09$

  • Choi Byoung Ki;Jang Joon Ho;Kim, Seong Han;Kim, Hong Seok;Park, Jong Sik;Kim Yoo Young;Kim, Don;Lee Sung Han;Yo Chul Hyun;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 1992
  • $ZrO_2-dopedYb_2O_3solid$ solutions containing 1, 3, 5, 7 and 9 mol% $ZrO_2were$ synthesized from spectroscopically pure $Yb_2O_3$ and $ZrO_2$ powders and found to be rare earth C-type structure by XRD technique. Electrical conductivities were measured as a function of temperatures from 700 to $1050^{\circ}C$ and oxygen partial pressures from 1${\times}$$10^-5$ to 2${\times}$ $10^-1$atm. The electrical conductivities depend simply on temperature and the activation energies are determined to be 1.56-1.68 $_eV$. The oxygen partial pressure dependence of the electrical conductivity shows that the conductivity increases with increasing oxygen partial pressure, indicating p-type semiconductor. The $PO_2$ dependence of the system is nearly power of 1/4. It is suggested from the linearity of the temperature dependence of electrical conductivity and only one value of 1/n that the solid solutions of the system have single conduction mechanism. From these results, it is concluded that the main defects of the system are negatively doubly charged oxygen interstitial in low. $ZrO_2doping$ level and negatively triply charged cation vacancy in high doping level and the electrical conduction is due to the electronic hole formed by the defect structure.

Characterization of Structure and Electrical Properties of $TiO_2$Thin Films Deposited by MOCVD (화학기상증착법에 의한$TiO_2$박막의 구조 및 전기적 특성에 관한 연구)

  • Choe, Sang-Jun;Lee, Yong-Ui;Jo, Hae-Seok;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • $(TiO_{2})$ thin films were deposited on p-Si(100) substrate by APMOCVD using titanium isopropoxide as a source material. The deposition mechanism was well explained by the simple boundary layer theory and the apparent activation energy of the chemical reaction controlled process was 18.2kcal /mol. The asdeposited films were polycrystalline anatase phase and were transformed into rutile phase after postannealing. The postannealing time and the film thikness as well as the postannealing temperature also affected the phase transition. The C-V plot exhibited typical charateristics of MOS diode, from which the dielectric constant of about 80 was obtained. The capacitance of the annealed film was decreased but those of the Nb or Sr doped films were not changed. I-V characteristics revealed that the conduction mechanism was hopping conduction. The postannealing and the doping of Nb or Sr cause to decrease the leakage current and to increase the breakdown voltage.

  • PDF