DOI QR코드

DOI QR Code

Differences of Structural and Electronic Properties in $Ba_{1-x}K_xBiO_3$ (x=0, 0.04, and 0.4)

  • Published : 1999.09.20

Abstract

Electronic structures calculated based upon the extended Huckel tight-binding method for Ba1-xKxBiO3 with x = 0, 0.04, and 0.4 are reported. It is noticed that the commensurate ordering of Bi 3+ and Bi 5+ is responsible for the insulating and semiconducting behavior in BaBiO3 and Ba0.96K0.04BiO4. The band gaps of 3.2 eV and 1.4 eV for the former and the latter compounds, respectively, are consistent with the experimental results. Doping in Bi 6s-block band up to x = 0.4 causes the collapse of the ordering of Bi 3+ and Bi 5+, thereby resulting in the superconductivity in the Ba0.6K0.4BiO3 compound. Strikingly, the character of oxygen contributes to the conducting mechanism than that of the bismuth. This is quite different from the cuprate superconductors in which the character of copper dominates that of oxygen.

Keywords

References

  1. Nature v.367 Cava, R.J.;Takagi, H.;Zandbergen, H.W.;Krajewski, J.J.;Peck Jr, W. F.;Siegrist, T.;Batlogg, B.;van Dover, R.B.;Felder, R. J.;Mizuhashi, K.;Lee, J. O.;Eisaki, H.;Uchida, S.
  2. Nature v.367 Cava, R. J.;Takagi, H.;Batlogg, B.;Zandbergen, H. W.;Krajewski, J.J.;Peck Jr, W. F.;van Dover, R. B.;Felder, R. J.;Siegrist, T.;Mizuhashi, K.;Lee, J. O.;Eisaki, H.;Carter, S. A.;Uchida, S.
  3. Nature v.372 Cava, R. J.;Zandbergen, H. W.;Batlog, B.;Eisaki, H.;Takagi, H.;Krajewski, J. J.;Peck Jr W. F.;Gyorgy, E. M.;Uchida, S.
  4. Nature v.372 Zandbergen, H.W.;Jansen, J.;Cava, R. J.;Krajewski, J. J.;Peck Jr, W. F.
  5. Nature v.350 Hebard, A. F.;Rosseinsky, M. J.;Haddon, R. C.;Murphy, D. W.;Glarum, S. H.;Palstra, T. T. M.;Ramirez, A. P.;Kortan, A. R.
  6. Science v.252 Holczer, K.;Klein, O.;Huang, S.-M.;Kaner, R. B.;Fu, K.-J.;Whetten, R. L.;Diederich, F.
  7. Phys. Rev. Lett. v.66 Rosseinsky, M. J.;Ramirez, A. P.;Glarum, S. H.;Murphy, D. W.;Haddon, R. C.;Hebard, A. F.;Palstra, T. T. M.;Kortan, A. R.;Zahurak, S. M.;Makhija, A. V.
  8. Nature v.351 Stephens, P. W.;Mihaly, L.;Lee, P. L.;Whetten, R. L.;Huang, S.-M.;Kaner, R.;Diederich, F.;Holczer, K.
  9. Nature v.352 Fleming, R. M.;Ramirez, A. P.;Rosseinsky, M. J.;Murphy, D. W.;Haddon, R. C.;Zahurak, S. M.;Makhija, A. V.
  10. Nature v.352 Tanigaki, K.;Ebbesen, T. W.;Saito, S.;Mijuki, J.;Tsai, J. S.;Kubo, Y.;Kuroshima, S.
  11. Nature v.352 Kelty, S.P.;Chen, C.-C.;Lieber, C. M.
  12. Nature v.356 Rosseinsky, M. J.;Murphy, D. W.;Fleming, R. M.;Tycko, R.;Ramirez, A. P.;Siegrist, T.;Dabbagh, G.;Barrett, S. E.
  13. Nature v.332 Cava, R. J.;Batlogg, B.;Krajewski, J. J.;Farrow, R. C.;Rupp Jr, L. W.;White, A. E.;Short, K. T.;Peck Jr, W. F.;Kometani, T. Y.
  14. Anorg. Allg. Chem. v.319 Scholder, R.;Ganter, K.;Glaser, H.;Merz, G. Z.
  15. J. Phys. Soc. Jpn. v.31 Nakamura, T.;Saburo, K.;Sata, T.
  16. Solid State Commun. v.12 de Hair, J. Th. W.;Blasse, G.
  17. Solid State Commun. v.19 Cox, D. E.;Sleight, A. W.
  18. Acta. Cryst. v.B35 Cox, D. E.;Sleight, A. W.
  19. Solid State Commun. v.17 Sleight, A. W.;Gillson, J. L.;Bierstedt, P. E.
  20. Nature v.335 Schneemeyer, L. F.;Thomas, J. K.;Siegrist, T.;Batlogg, B.;Rupp, L. W.;Opila, R. L.;Cava, R. J.;Murphy, D. W.
  21. J. Am. Chem. Soc. v.100 Whangbo, M.-H.;Hoffmann, R.
  22. J. Am. Chem. Soc. v.100 Ammeter, J. H.;Burgi, H.-B.;Thibeault, J.;Hoffmann, R.
  23. Inorg. Chem. v.26 Whangbo, M.-H.;Evain, M.;Beno, M. A.;Williams, J. M.
  24. Inorg. Chem. v.26 Whangbo, M.-H.;Evain, M.;Beno, M. A.;Williams, J. M.
  25. Physica C v.160 Jung, D.;Whangbo, M.-H.;Herron, N.;Torardi, C. C.
  26. Bull Korean Chem. Soc. v.20 Jung, D.