• 제목/요약/키워드: Dopamine biosynthesis

검색결과 33건 처리시간 0.033초

Effects of Aporphine Compounds on Dopamine Biosynthesis in PC12 Cells

  • Jin, Chun-Mei;Lee, Jae-Joon;Yin, Shou-Yu;Kim, Yu-Mi;Lee, Myung-Koo;Ryu, Si-Yong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.254.1-254.1
    • /
    • 2002
  • The effects of aporplline isoquinoline alkaloids such as liriodenine. anonaine and asimilobine on dopamine biosynthesis in PC12 cells were investigated. Treatment of PC12 cells with liriodenine (10 ${\mu}$M), anonaine (0.05 ${\mu}$M) and asimilobine (0.15 ${\mu}$M) showed 33.6%, 37.7% and 35.1 % inhibition of dopamine content for 12 h. The IC$\sub$50/ values of liriodenine. anonaine and asimilobine were 8.4 ${\mu}$M. 0.05 ${\mu}$M and 0.13 ${\mu}$M. respectively. (omitted)

  • PDF

Enantio-Selective Inhibition of (1R,9S)- and (1S,9R)-$\beta$-Hydrastines on Dopamine Biosynthesis in PC12 Cells

  • Yin, Shou-Yu;Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, You-Jong;Kang, Min-Hee;Lee, Myung-Koo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.138.2-139
    • /
    • 2003
  • The inhibitory effects of (1R, 9S)- and (1S, 9R)-enantiomers of $\beta$-hydrastine (BHS) on dopamine biosynthesis in PC12 cells were investigated. (1R, 9S)-BHS decreased the intracellular dopamine content with the $IC_{50}$ value of 14.3 $\mu\textrm{M}$ at 24 h, but (1S, 9R)-BHS did not. In these conditions, (1R, 9S)-BHS inhibited TH activity mainly in a concentration-dependent manner(33% inhibition at 20 $\mu\textrm{M}$) and decreased TH mRNA level. (omitted)

  • PDF

Inhibition of Tyrosine Hydroxylase by Palmatine

  • Lee, Myung-Koo;Zhang, Yong-He;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • 제19권4호
    • /
    • pp.258-260
    • /
    • 1996
  • Palmatine, an protoberberine isoquinoline alkaloid, has been found to inhibit dopamine biosynthesis by reducing tyrosine hydroxylase (TH) activity in PC12 cells (Lee and Kim, 1996). We have therefore investigated the effects of palmatine on bovine adrenal TH. Palmatine showed a mild inhibition on bovine adrenal TH (36.4% inhibition at concentration of $200\muM$). Bovine adrenal TH was inhibited competitively by palmatine with a substrate L-tyrosine. The Ki value was found to be 0.67 mM. This result suggests that the inhibition of TH activity by palmatine may be partially involved in the reduction of dopamine biosynthesis in PC12 cells.

  • PDF

Tetrahydropapaveroline의 PC12 세포내 Dopamine 생합성 저해작용 (Inhibitory Effects of Tetrahydropapaveroline on Dopamine Biosynthesis in PC12 Cells)

  • 이재준;김유미;김미나;이명구
    • 약학회지
    • /
    • 제49권2호
    • /
    • pp.156-161
    • /
    • 2005
  • Tetrahydropapaveroline (THP) at 5-15 ${\mu}$M has been found to induce L-DOPA-induced oxidative apoptosis in PC12 cells. In this study, the inhibitory effects of THP on dopamine bios ynthesis in PC12 cells and tyrosine hydroxylase (TH) activity in bovine adrenal were investigated. Treatment of PC12 cells with THP at 2.5-10 ${\mu}$M significantly decreased the intracellular dopamine content in a concentration-dependent manner (18.3% inhibition at 10 ${\mu}$M THP). In these conditions, TH activity was markedly inhibited by the treatment with THP at 2.5-10 ${\mu}$M in PC12 cells (23.4% inhibition at 10 $\mu$ M THP). In addition, THP had an inhibitory effect on bovine adrenal TH activity IC50 value, 153.9${\mu}$M). THP exhibited uncompetitive inhibition on bovine adrenal TH activity with a substrate L-tyrosine with the KI value of 0.30 mM. Treatment with L-DOPA at 20~50 ${\mu}$M increased the intracellular dopamine content in PC12 cells, and the increase in dopamine content by L-DOPA was inhibited in part when THP at non-cytotoxic (5-10 ${\mu}$M) or cytotoxic (15${\mu}$M) concentrations was associated with L-DOPA (20 and 50 ${\mu}$M) for 24 h incubation. These results suggest that THP at 5-10${\mu}$M decreases the basal dopamine content and reduces the increased dopamine content induced by L-DOPA in part by the inhibition of TH activity, and that THP at 15${\mu}$M also decreases dopamine content by oxidative stress in PC12 cells.

Inhibitory Effects of the Stem Bark of Albizia julibrissin on Catecholamine Biosynthesis in PC12 Cells

  • Lee, Myung-Koo
    • 생약학회지
    • /
    • 제27권2호
    • /
    • pp.155-158
    • /
    • 1996
  • The methanol extract of Albizzia julibrissin Durazz. (Leguminosae) was successively partitioned into dichloromethane, ethylacetate, butanol (BuOH) and water fractions, and the effects of the each solvent extract on catecholamine biosynthesis in PC12 cells were investigated. Among them, the BuOH fraction $(5{\mu}g/ml\;medium)$ showed 68.8% and 63.6% inhibition on dopamine and norepinephrine content in PC12 cells, respectively. Tyrosine hydroxylase (TH) activity was also reduced markedly by treatment of the BuOH fraction (41.8% inhibition at $5{\mu}g/ml$ in the medium). Each solvent fraction did not show cytotoxicity towards PC12 cells by trypan blue exclusion test. This result suggests that the BuOH fraction has an inhibitory effect on catecholamine biosynthesis by reducing TH activity in PC12 cells.

  • PDF

수종의 생약이 PC12 Cells 중의 Catecholamines 생합성에 미치는 영향 (Effects of Herbal Medicines on Catecholamine Biosynthesis in PC12 Cells)

  • 이명구;황방연;정은희;이경순;김학성
    • 생약학회지
    • /
    • 제26권1호
    • /
    • pp.57-61
    • /
    • 1995
  • MeOH extracts of eight herbal medicines were investigated for the effects on catecholamine biosynthesis and tyrosine hydroxylase (TH) activity in PC12 cells. Among them, the MeOH extracts of Polygalae Radix and Rehmaniae Radix showed 32 and 22% inhibition on the dopamine biosynthesis, respectively at a concentration of $40{\mu}g/ml$ medium. But, the TH activity was reduced by the treatment of Polygalae Radix. These results suggest that Polygalae Radix has an inhibitory effect on the catecholamine biosynthesis by the reduction of TH activity in PC12 cells.

  • PDF

Inhibitory Effects on Dopamine Biosynthsis and Protective Effect on L-DOPA-induced Neurotoxicity of liriodenine in PC12 cells

  • Jin, Chun-Mei;Lee, Jae-Joon;Yin, Shou-Yu;Kim, Yu-Mi;Yang, You-Jong;Ryu, Si-Yong;Lee, Myung-Koo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.139.1-139.1
    • /
    • 2003
  • The effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine biosynthesis and L-DOPA-induced neurotoxicity in PC12 cells were investigated. Treatment of PC12 cells with liriodenine at 10 $\mu\textrm{M}$ showed 33.6% inhibition of dopamine content decreased at 3 h and reached a minimal level at 12 h after the exposure to liriodenine at 10 $\mu\textrm{M}$. (omitted)

  • PDF

Effects of (lR,9S)-($\beta$)-Hydrastine on Intracellular Calcium Concentration in PC12 Cells

  • Kim, Yu-Mi;Lee, Jae-Joon;Jin, Chun-Mei;Yang, Yoo-Jung;Yin, Shou-Yu;Kang, Min-Hee;Lee, Myung-Koo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.97.2-97.2
    • /
    • 2003
  • (1R,9S)-(${\beta}$)-Hydrastine (HS) at 10-50 ${\mu}$M has been proven to have an inhibitory effect on dopamine biosynthesis in PC12 cells by the inhibition of tyrosine hydroxylase (TH) activity and TH gene expression. In the present study, therefore, the effects of HS on the basal and K$\^$+/-induced dopamine release, and Ca$\^$2+/ influx induced by high K$\^$+/ and caffeine in PC12 cells were investigated. The dopamine release by high K$\^$+/ (56 mM) was inhibited by co-incubation of 20 ${\mu}$M HS. Application of HS also significantly reduced the magnitude of the maintained Ca$\^$2+/ influx induced by K$\^$+/ depolarization. (omitted)

  • PDF

Inhibition of L-DOPA-Induced Increase in Dopamine Content by $(1R,9S)-{\beta}-Hydrastine$ Hydrochloride in PC12 cells

  • Yin, Shou-Yu;Lee, Jae-Joon;Kim, Yu-Mi;Jin, Chun-Mei;Yang, Yoo-Jung;Kang, Min-Hee;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • 제10권3호
    • /
    • pp.119-123
    • /
    • 2004
  • The effects of BHSH on L-DOPA-induced increase in dopamine content in PC12 cells were investigated. L-DOPA treatment at $20\;or\;50\;{\mu}M$ increased dopamine content after both 24 and 48 h of incubation in PC12 cells. However, the co-treatments of BHSH $(10-50\;{\mu}M)$ with L-DOPA $(20\;or\;50\;{\mu}M)$ significantly inhibited the increase of dopamine content induced by L-DOPA. BHSH treatment at $10-50\;{\mu}M$ significantly inhibited basal aromatic L-amino acid decarboxylase (AADC) activity in a concentration-dependent manner at 15 min, and then AADC activity was rapidly recovered to the control level at about 2 h. These results indicate that the inhibition of AADC activity by BHSH was, in part, contributed to the early-stage decrease of dopamine content induced by LDOPA in PC12 cells. Taken together, it is proposed that the short-term inhibition of dopamine biosynthesis by BHSH was mediated by the regulation of tyrosine hydroxylace (TH).

The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila

  • Ryu, Tae Hoon;Subramanian, Manivannan;Yeom, Eunbyul;Yu, Kweon
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.640-648
    • /
    • 2022
  • CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.